Skip to main content
Log in

Relationships between metals and hyporheic invertebrate community structure in a river recovering from metals contamination

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biota and chemistry from hyporheic samplers were used to describe environmental changes, after treatment of mine drainage, in the shallow hyporheic zone in the upper Arkansas River, Colorado, U.S.A. Samples were collected (1992–1997) from above and below the mine drainage source, and further downstream where a historically cleaner tributary enters the system. Hyporheic metal concentrations were high during spring runoff at the impacted site even after initiation of treatment, but declined after several years. Correspondence analysis and increased invertebrate taxa richness suggested that hyporheic macroinvertebrates were recovering at the previously impacted site. Differences in substrate between sites and high water flows in 1995 also appeared to affect hyporheic communities. High taxa richness and abundance, taxa unique from those found at the surface, and high concentrations of metals found in the shallow hyporheic zone suggests that sampling this zone is important for monitoring recovery of polluted streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, 1989. Standard Methods for the Analysis of Water and Wastewater. 17th edn.

  • Benner, S. G., E. W. Smart & J. N. Moore, 1995. Metal behavior during surface-groundwater interaction, Silver Bow Creek, Montana. Envir. Sci. Technol. 29: 1789–1795.

    Google Scholar 

  • Biesinger, K. E. & G. M. Christensen, 1972. Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J. Fish Res. Bd Can. 29: 1691–1700.

    Google Scholar 

  • Bloom, S. A., 1994. The Community Analysis System 5.0. Ecological Data Consultants, Inc. Archer, Florida.

    Google Scholar 

  • Bourg, A. C. M. & C. Bertin, 1993. Biogeochemical processes during the infiltration of riverwater into an alluvial aquifer. Envir. Sci. Technol. 27: 661–666.

    Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwat. Biol. 37: 1–33.

    Article  Google Scholar 

  • Campbell, D. H., D. W. Clow, G. P. Ingersoll, M. A. Mast, N. E. Spahr & J. T. Turk, 1995. Processes controlling the chemistry of two snowmelt-dominated streams in the Rocky Mountains. Wat. Resour. Res. 31: 2811–2821.

    Google Scholar 

  • Cao, Y., A. W. Bark & W. P. Williams, 1996. Measuring the responses of macroinvertebrate communities to water pollution: a comparison of multivariate approaches, biotic and diversity indices. Hydrobiologia 241: 1–19.

    Google Scholar 

  • Chadwick, J. W. & S. P. Canton, 1984. Inadequacy of diversity indices in discerning metal mine drainage effects on a stream invertebrate community. Wat. Air Soil Pollut. 22: 217–223.

    Google Scholar 

  • Clements, W. H., D. S. Cherry & J. Cairns, Jr., 1988. Structural alterations in aquatic insect communities exposed to copper in laboratory streams. Envir. Toxicol. Chem. 7: 715–722.

    Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier & J.-L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwat. Biol. 37: 257–276.

    Google Scholar 

  • EPA, 1983. Methods of chemical analysis of water and wastes. EPA-600/4–79–020, Environmental Monitoring and Support Laboratory, Cincinnati, Ohio.

    Google Scholar 

  • Fraser, B. G. & D. D. Williams, 1997. Accuracy and precision in sampling hyporheic fauna. Can.J. Fish. aquat. Sci. 54: 1135–1141.

    Google Scholar 

  • Fraser, B. G. & D. D. Williams, 1998. Seasonal boundary dynamics of a groundwater/surface-water ecotone. Ecology 79(6): 2019- 2031.

    Google Scholar 

  • Gauch, H. G., jr., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Gibert, J., P. Marmonier, V. Vanek & S. Plénet, 1995. Hydrological exchange and sediment characteristics in a riverbank: relationship between heavy metals and invertebrate community structure. Can. J. Fish. aquat. Sci. 52: 2084–2097.

    Google Scholar 

  • Gilpin, B. R. & M. A. Brusven, 1976. Subsurface sampler for determining vertical distribution of stream-bed benthos. Prog. Fish-C. 38: 192–194.

    Google Scholar 

  • Hare, L., 1992. Aquatic insects and trace metals: bioavailability, bioaccumulation and toxicity. Crit. Rev. Toxicol. 22(5/6): 327- 369.

    PubMed  Google Scholar 

  • Hassage, R. L. & K. W. Stewart, 1991. Use of substrate volume and void space to examine the presence of three stonefly species (Plecoptera) among stream habitats. Entomol. Soc. Amer. 84: 309–315.

    Google Scholar 

  • Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.

    Google Scholar 

  • Jain, C. K. & D. Ram, 1997. Adsorption of lead and zinc on bed sediments of the river Kali.Wat. Res. 31: 154–162.

    Google Scholar 

  • Khangarot, B. S. & P. K. Ray, 1989. Investigation of correlation between physicochemical properties of metals and their toxicity to the water flea Daphnia magna Straus. Ecotoxicol. Environ. Saf. 18: 109–120.

    Google Scholar 

  • Kimball, B. A., 1991. Physical, chemical and biological processes in waters affected by acid mine drainage: from headwater streams to downstream reservoirs. In Mallard, G. E. & D. A. Aronson (eds), U.S. Geological Survey Toxic Substances Hydrology Program-Proceedings of the Technical Meeting, Monterey, California, March 11–15, 1991: U.S. Geological Survey Water-Resources Investigation Report 91–4034.Washington, D.C.: U.S. Government Printing Office: 365–370.

    Google Scholar 

  • LaPoint, T. W. & J. F. Fairchild, 1992. Evaluation of sediment contaminant toxicity: the use of freshwater community structure. In Burton, G. A. Jr. (ed.), Sediment Toxicity Assessment. Lewis Publishers, Chelsea, MI: 87–110.

    Google Scholar 

  • LaPoint, T. W., S. M. Melancon & M. K. Morris, 1984. Relationships among observed metal concentrations, criteria, and benthic community structural responses. J. WPCF 56: 1030–1038.

    Google Scholar 

  • McNight, D. M., B. A. Kimball & K. E. Bencala, 1988. Iron photoreduction and oxidation in an acidic mountain stream. Science 240: 637–639.

    Google Scholar 

  • McNight, D. M. & K. E. Bencala, 1990. The chemistry of iron, aluminum and dissolved organic material in three acidic, metalenriched, mountain streams, as controlled by watershed and instream processes. Wat. Resour. Res. 26: 3087–3100.

    Google Scholar 

  • Mitsch, W. J. & K. M. Wise, 1998. Water quality, fate of metals and predictive model validation of a constructed wetland treating acid mine drainage. Wat. Res. 32: 1888–1900.

    Google Scholar 

  • Mount, D. M., 1966. The effect of total hardness and pH on acute toxicity of zinc to fish. Airand Wat. Pollut. Int. J. 10: 49–56.

    Google Scholar 

  • Munro, B. H., 1993. Correlation. In Munro, B. H. & E. B. Page (eds), Statistical Methods for Health Care Research, 2nd edn. J.B. Lippincott Co., Philadelphia: 173–192.

    Google Scholar 

  • Nelson, S. M. & R. A. Roline, 1996. Recovery of a stream macroinvertebrate community from mine drainage disturbance. Hydrobiologia 339: 73–84.

    Google Scholar 

  • Notenboom, J., S. Plénet & M.-J. Turquin, 1994. Groundwater contamination and its impact on groundwater animals and ecosystems. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego: 477–504.

    Google Scholar 

  • Peckarsky, B. L. & K. Z. Cook, 1981. Effects of keystone mine effluent on colonization of stream benthos. Envir. Ent. 10: 864- 871.

    Google Scholar 

  • Plenet, S. & J. Gibert, 1994. Invertebrate community responses to physical and chemical factors at the river/aquifer interaction zone I. Upstream from the city of Lyon. Arch. Hydrobiol. 132: 165- 189.

    Google Scholar 

  • Richards, C. & K. L. Bacon, 1994. Influence of fine sediment on macroinvertebrate colonization of surface and hyporheic stream substrates. Great Basin Nat. 54: 106–113.

    Google Scholar 

  • Roline, R. A., 1988. The effects of heavy metals pollution of the upper Arkansas River on the distribution of aquatic macroinvertebrates. Hydrobiologia 160: 3–8.

    Google Scholar 

  • Rouch, R., A. Mangin, M. Bakalowicz & D. D=Hulst, 1997. The hyporheic zone: hydrogeological and geochemical study of a stream in the Pyrenees mountain. Int. Rev. ges. Hydrobiol. 82(3): 357–378.

    Google Scholar 

  • Stanford, J. A., J. V. Ward & B. K. Ellis, 1994. Ecology of the alluvial aquifers of the Flathead River, Montana. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego: 367–390.

    Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a thirdorder stream in northwestern California: hyporheic processes. Ecology 70: 1893–1905.

    Google Scholar 

  • Ugland, R. C., W. S. Maura, R. D. Steger & G. B. O'Neill, 1995. Water resources data, Colorado, Water year 1994, Volume 1. Missouri River Basin, Arkansas River Basin and Rio Grande Basin. U.S.G.S.WDR-CO-94-1.

  • Vervier, P., J. Gibert, P. Marmonier & M.-J. Dole-Olivier, 1992. A perspective on the permeability of the surface freshwatergroundwater ecotone. J. n. am. Benthol. Soc. 11(1): 93–102.

    Google Scholar 

  • von Gunten, H. R., G. Karametaxas, U. Krähenbühl, M. Kuslys, R. Giovanoli, E. Hoehn & R. Keil, 1991. Seasonal biogeochemical cycles in riverborne groundwater. Geoch. Cosm. A. 55: 3597- 3609.

    Google Scholar 

  • Ward, J. V. & N. J. Voelz, 1990. Gradient analysis of interstitial meiofauna along a longitudinal stream profile. Stygologia 5(2): 93–99.

    Google Scholar 

  • White, D. S., 1990. Biological relationships to convective flow patterns within stream beds. Hydrobiologia 196: 149–158.

    Google Scholar 

  • Williams, D. D. & M. R. Smith, 1996. Colonization dynamics of river benthos in response to local changes in bed characteristics. Freshwat. Biol. 36: 237–248.

    Google Scholar 

  • Winger, P. V. & P. J. Lasier, 1991. A vacuum-operated pore-water extractor for estuarine and freshwater sediments. Arch. envir. Contam. Toxicol. 21: 321–324.

    Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis, 2nd edn. Prentice-Hall, Inc., New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, S.M., Roline, R.A. Relationships between metals and hyporheic invertebrate community structure in a river recovering from metals contamination. Hydrobiologia 397, 211–226 (1999). https://doi.org/10.1023/A:1003734407788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003734407788

Navigation