Skip to main content
Log in

Dynamics of abiotic parameters, solute removal and sediment retention in summer-dry headwater streams of western Oregon

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Summer-dry headwater streams provide an important interface between aquatic and terrestrial environments. Six summer-dry streams differing in flow duration and exposure were studied in western Oregon. On a temporal and a spatial scale, nitrate patterns in such systems reflect the close connection to subsurface flow and nitrification/denitrification processes in the soil. Retention efficiency for sediment generated from a forest road was high. In ephemeral streams, 60–80% of suspended sediment (1.6 μm < suspended sediment < 53 μm) was removed from the water column over a 75 m stretch at moderate input levels. During injection trials solute removal was largely due to groundwater exchange. Exchange rates between stream water and subsurface flow were estimated at 0.75 and 0.8% per meter of channel. Particularly high removal of nitrate in a meadow stream indicated biological uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M., 1977. Introduction to Soil Microbiology. JohnWiley and Sons, New York.

    Google Scholar 

  • APHA, 1985. Standard Methods for the Examination of Water and Wastewater, 16th edition. American Public Health Association, Port City, Maryland, 1268 pp.

    Google Scholar 

  • Bencala, K. E., R. E. Rathbun, A. P. Jackman, V. C. Kennedy, G. W. Zellweger & R. J. Avanzino, 1983. Rhodamine WT losses in a mountain stream environment. Wat. Res. Bull. 19: 943–950.

    CAS  Google Scholar 

  • Bergmann, J. G. & J. Sanik, 1957. Determination of trace amount of chlorine in Naphtha. Analyt. Chem. 29: 241–243.

    Article  CAS  Google Scholar 

  • Bilby, R. E. & G. E. Likens, 1979. Effect of hydrologic fluctuations on the transport of fine particulate organic carbon in a small stream. Limnol. Oceanogr. 24: 69–75.

    Article  Google Scholar 

  • Bilby, R. E. & G. E. Likens, 1980. Importance of organic debris dams in the structure and function of stream ecosystems. Ecology 61: 1107–1113.

    Article  Google Scholar 

  • Boulton, A. J. & P. S. Lake, 1990. The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analysis of physicochemical features. Freshwat. Biol. 24: 123–141.

    Article  CAS  Google Scholar 

  • Chapman, L. J. & D. L. Kramer, 1991. Limnological observations of an intermittent tropical dry forest stream. Hydrobiologia 226: 153–166.

    Google Scholar 

  • Comin, F. A. & W. D. Williams, 1994. Parched continents: our common future? In R. Margalef (ed.), Limnology Now: A Paradigm of Planetary Problems. Elsevier, Amsterdam: 473–527.

    Google Scholar 

  • Delucchi, C. M. & B. L. Peckarsky, 1989. Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78: 199–207.

    Article  Google Scholar 

  • Dieterich, M., 1992. Insect community composition and physicochemical processes in summer-dry streams of western Oregon. Ph.D. Thesis, Oregon State University, Corvallis, OR, 191 pp.

    Google Scholar 

  • Everard, M., 1996. The importance of periodic droughts for maintaining diversity in the freshwater environment. Freshwat. Forum 7: 33–50.

    Google Scholar 

  • Franklin, J. F. & C. T. Dyrness, 1973. Natural vegetation of Oregon and Washington. US Forest Service General Technical Report PNW-8, Portland.

  • Graham, A. A., 1990. Siltation of stone-surface periphyton by clay sized particles from low concentration in suspension. Hydrobiologia 199: 107–115.

    Article  Google Scholar 

  • Gregory, S. V., 1980. Effects of light, nutrients and grazing on periphyton communities in streams. Ph.D. Thesis, Oregon State University, Corvallis, OR.

    Google Scholar 

  • Hewlett, J. D. & R. Hibbert, 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In W. E. Sopper & H. W. Kull (eds), International Symposium on Forest Hydrology. Pergamon Press, Oxford: 275–290.

    Google Scholar 

  • Hornberger, G. M., P. F. Germann & K. J. Beven, 1991. Through-flow and solute transport in an isolated sloping soil block in a forest catchment. J. Hydrol. 124: 81–99.

    Article  Google Scholar 

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • Legier, P. & J. Talin, 1973. Comparaison des ruisseaux permanents et temporaires de la Provence calcaire. Annal. Limnol. 9: 273–292.

    Google Scholar 

  • Leopold, L. B., 1994. A View of the River. Harvard University Press, Cambridge, MA, 298 pp.

    Google Scholar 

  • Lowe, R. L., S. W. Golladay & J. R. Webster, 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. J. n. am. Benthol. Soc. 5: 221–229.

    Article  Google Scholar 

  • Maltchik, L. S., S. Molla & C. Casado, 1996. Measurement of nutrient spiralling during a period of continuous surface flow in a Mediterranean temporary stream (Arroyo de La Montesina, Spain). Hydrobiologia 335: 133–139.

    Article  CAS  Google Scholar 

  • Minshall, G. W, R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing & R. L. Vannote, 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monographs 53: 1–25.

    Article  Google Scholar 

  • Mulholland, P. J., J. D. Newbold, J. W. Elwood & L. A. Ferren, 1985. Phosphorous sprialling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.

    Article  Google Scholar 

  • Munn, N. L. and J. L. Meyer, 1988. Rapid flow through the sediments of a headwater stream in the southern Appalachians. Freshwat. Biol. 20: 235–240.

    Article  Google Scholar 

  • Munn, N. L. and J. L. Meyer, 1990. Habitat specific solute retention in two small streams: an intersite comparison. Ecology 71: 2069–2082.

    Article  Google Scholar 

  • NADP, 1990. Precipitation chemistry in the United States 1989. National Atmospheric Deposition Program, US Geological Survey, Task group on deposition monitoring, 482 pp.

  • Naiman, J. R., 1982. Characteristics of sediment and organic carbon export from pristine boreal forest watersheds. Can. J. Fish. aquat. Sci. 39: 1699–1718.

    Article  CAS  Google Scholar 

  • Naiman R. J. & J. R. Sedell, 1979. Benthic organic matter as a function of stream order in Oregon. Arch. Hydrobiol. 87 404–422.

    CAS  Google Scholar 

  • Naiman, R. J., J. M. Melillo, M. A. Lock & T. E. Ford, 1987. Longitudinal pattern of ecosystem processes and community structure in a subarctic river continuum. Ecology 68: 1139–1156.

    Article  Google Scholar 

  • Newbold, J. D., R. V. O'Neill, J. V. Elwood and W. van Winkle, 1982. Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. Am. Nat. 120: 628–652.

    Article  Google Scholar 

  • Newbold, J. D., J.W. Elwood, R. V. O'Neill & A. L. Sheldon, 1983. Phosphorous dynamics in a woodland stream ecosystem: a study of nutrient spiralling. Ecology 64: 1249–1265.

    Article  CAS  Google Scholar 

  • Patrick, W. H. & R. Wyatt, 1964. Soil nitrogen loss as a result of alternate submergence and drying. Soil Sci. Soc. Am. Proc. 28: 647–653.

    Article  Google Scholar 

  • Pi nol, J. A. Avila & F. Rodà, 1992. The seasonal variation of streamwater chemistry in three forested Mediterranean catchments. J. Hydrol. 149: 119–141.

    Article  Google Scholar 

  • Reddy, K. R. & W. H. Patrick, 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem. 7: 87–94.

    Article  CAS  Google Scholar 

  • Smart, P. L. and I. M. S. Laidlaw, 1977. An evaluation of some fluorescent dyes for water tracing. Wat. Resources Res. 13: 15–33.

    Article  CAS  Google Scholar 

  • Stream Solute Workshop, 1990. Concepts and dynamics for assessing solute dynamics in stream ecosystems. J. n. am. Benthol. Soc. 9: 95–119.

    Article  Google Scholar 

  • Triska, F. J., J. H. Duff & R. J. Avanzino, 1990. Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Can. J. Fish. aquat. Sci. 47: 2099–2111.

    CAS  Google Scholar 

  • van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. J. Kansas Ent. Soc. 68(2)suppl: 4–17.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 370–377.

    Article  Google Scholar 

  • Williams, D. D., 1996. Environmental constraints in temporary freshwaters and their consequences for the insect fauna. J. n. am. Benthol. Soc. 15: 634–650.

    Article  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1977. The ecology of temporary streams. II. General remarks on temporary streams. Int. Rev. ges. Hydrobiol. 62: 53–61.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieterich, M., Anderson, N. Dynamics of abiotic parameters, solute removal and sediment retention in summer-dry headwater streams of western Oregon. Hydrobiologia 379, 1–15 (1998). https://doi.org/10.1023/A:1003423016125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003423016125

Navigation