Skip to main content
Log in

Symbolic Itô calculus in AXIOM: An ongoing story

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Symbolic Itô calculus refers both to the implementation of Itô calculus in a computer algebra package and to its application. This article reports on progress in the implementation of Itô calculus in the powerful and innovative computer algebra package AXIOM, in the context of a decade of previous implementations and applications. It is shown how the elegant algebraic structure underlying the expressive and effective formalism of Itô calculus can be implemented directly in AXIOM using the package's programmable facilities for “strong typing” of computational objects. An application is given of the use of the implementation to provide calculations for a new proof, based on stochastic differentials, of the Mardia-Dryden distribution from statistical shape theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R.M. 1976. A non-standard representation for Brownian motion and Ito integration. Israel Journal of Mathematics 25: 15-46.

    Google Scholar 

  • Ben Arous G., Cranston M., and Kendall W.S. 1995. Coupling constructions for hypoelliptic diffusions: Two examples. In: Cranston M. and Pinsky M. (Eds.), Stochastic Analysis: Summer Research Institute, July 11-30, 1993, Vol. 57, American Mathematical Society, Providence, RI Providence, pp. 193-212.

  • Bachelier L. 1900. Théeorie de la spéeculation. Annales Scientifiques de l'Ecole Normale Supéerieure III-17: 21-86.

    Google Scholar 

  • Baxter M. and Rennie A. 1996. Financial Calculus: An Introduction to Derivative Pricing. CUP, Cambridge.

  • Briggs P. 1992. Nuweb Version 0.87b: A simple literate programming tool. Published on the World-Wide Web by preston@cs.rice.edu.

  • Brown R. 1828. A brief account of microscopical observations made in the months of June, July, and August 1827, on the particles contained in the pollen of plants and on the general existence of active molecules inorganic and inorganic bodies. Philosophical Magazine (2nd series) 4: 161-173.

    Google Scholar 

  • Cyganowski S. 1996a. A Maple package for stochastic differential equations. In: Easton A. and May R. (Eds.), Computational Techniques and Applications. World Scientific, Singapore.

    Google Scholar 

  • Cyganowski S. 1996b. Solving stochastic differential equations with Maple. MapleTech (Maple Newsletter) 3(2): 38-40.

    Google Scholar 

  • Dewar M. 1997. Aldor–the language for computer algebra. Solve: The Newsletter for AXIOM Users 3: 1.

    Google Scholar 

  • Einstein A. 1956. Investigations on the Theory of BrownianMovement. In: Füurth R. (Ed.), Dover.

  • Émery M. 1989. Stochastic Calculus in Manifolds (with an Appendix by P.-A. Meyer). Springer Verlag, New York.

    Google Scholar 

  • Itô K. 1944. Stochastic integral. Proc. Imp. Acad. Tokyo 20: 519-524.

    Google Scholar 

  • Itô K. 1946. On a stochastic integral equation. Proc. Imp. Acad. Tokyo 22: 32-35.

    Google Scholar 

  • Itô K. 1975. Stochastic differentials. Applied Mathematics and Optimization 1: 374-381.

    Google Scholar 

  • Jenks R.D. and Sutor R.S. 1992. AXIOM the Scientific Ccomputation System. Springer Verlag, New York.

    Google Scholar 

  • Kendall D.G. 1977. The diffusion of shape. Advances in Applied Probability 9: 428-430.

    Google Scholar 

  • Kendall D.G. 1991. The Mardia-Dryden shape distribution for triangles-a stochastic calculus approach. Journal of Applied Probability 28: 225-230.

    Google Scholar 

  • Kendall W.S. 1987. Discussion of read paper by Clifford, Green and Pilling. Journal of the Royal Statistical Society (Series B: Methodological) 49: 286-287.

    Google Scholar 

  • Kendall W.S. 1988. Symbolic computation and the diffusion of shapes of triads. Advances in Applied Probability 20: 775-797.

    Google Scholar 

  • Kendall W.S. 1990. The Euclidean diffusion of shape. In: Welsh D. and Grimmett G. (Eds.), Disorder in Physical Systems. Oxford University Press, Oxford, pp. 203-217.

    Google Scholar 

  • Kendall W.S. 1991a. Symbolic Itô calculus: An introduction. Department of Statistics, University of Warwick, Research Report 217.

  • Kendall W.S. 1991b. Symbolic Itô calculus: An overview. In: Bouleau N. and Talay D. (Eds.), Probabilités Numeriques. INRIA, Rocquencourt, pp. 186-192.

  • Kendall W.S. 1992. A remark on the proof of Itôo's formula for C 2 functions of continuous semimartingales. Journal of Applied Probability 29: 216-221.

    Google Scholar 

  • Kendall W.S. 1993a. Computer algebra in probability and statistics. Statistica Neerlandica47: 9-25.

    Google Scholar 

  • Kendall W.S. 1993b. Doing stochastic calculus with Mathematica. In: Varian H. (Ed.), Economic and Financial Modeling with Mathematica, Springer Verlag, New York, pp. 214-238.

    Google Scholar 

  • Kendall W.S. 1998a. Itovsn3 in AXIOM: modules, algebras and stochastic differentials. Department of Statistics, University of Warwick, Research Report 328.

  • Kendall W.S. 1998b. Computer algebra. In: Armitage P. and Colton T. (Eds.), Encyclopedia of Biostatistics, Vol. 1,John Wiley & Sons, Chichester, pp. 839-845.

    Google Scholar 

  • Kendall W.S. 1998c. A diffusion model for Bookstein triangle shape. Advances in Applied Probability 30(2): 317-334.

    Google Scholar 

  • Kloeden P.E. and Platen E. 1992. Numerical Solution of Stochastic Differential Equations. Springer Verlag, New York.

    Google Scholar 

  • Kloeden, P.E. Platen, E., and Schurz H. 1994. Numerical Solution of SDEThrough Computer Experiments. Springer Verlag, New York.

    Google Scholar 

  • Kloeden P.E. and Scott W. 1993. Construction of stochastic numerical schemes through Maple. MapleTech (Maple Newsletter) 10: 60-65.

    Google Scholar 

  • Le H.L. 1991. A stochastic calculus approach to the shape distribution induced by a complex normal model. Math. Proc. Camb. Phil. Soc. 109: 221-228.

    Google Scholar 

  • Mardia K.V. 1989. Discussion of paper by D.G. Kendall. Statistical Science 4: 108-111.

    Google Scholar 

  • Mardia K.V. and Dryden I.L. 1989. Shape distributions for landmark data. Advances in Applied Probability 21: 742-755.

    Google Scholar 

  • Meyer P.A. 1981. Gùeométrie stochastique sans larmes. Séeminaire de Probabilités XV: 44-102. Springer Lecture Notes in Mathematics 850.

    Google Scholar 

  • Øksendal B. 1985. Stochastic Differential Equations: An Introduction with Applications. Springer Verlag, New York. (Now in 5th edition.)

    Google Scholar 

  • Price C.J. 1996. Zeros of Brownian polynomials and coupling of Brownian areas.Department of Statistics, University of Warwick, PhD Thesis.

  • Protter Ph. 1990. Stochastic Integration and Differential Equations:A New Approach. Springer Verlag, New York.

    Google Scholar 

  • Revuz D. and Yor M. 1991. Continuous martingales and Brownian Motion. Springer Verlag, New York.

    Google Scholar 

  • Riccomagno E. 1996. Rational noncommutative formal power series and iterated integral representation of a class of Ito processes. Bollettino UMI, VII. Ser. B 10(1): 25-50.

    Google Scholar 

  • Riccomagno E. and White L.J. 1997. Multi-strain species modeling via differential algebra reduction. University of Warwick Statistics Department Technical Report.

  • Rogers L.C.G. and Williams D. 1987. Diffusions, Markov Processes, and Martingales Volume2:Itô Calculus. John Wiley & Sons, Chichester.

    Google Scholar 

  • Schwartz L. 1982. Géométrie différentielle du 2éme ordre, semimartingales et éequations différentielle stochastique sur une variét diff´erentielle. Séminaire de Probabilités XVI: 1-150. Springer Lecture Notes in Mathematics 921.

  • Schwartz L. 1984. Semimartingales and their Stochastic Calculus on Manifolds. Les Presses de l'Universitéde Montréal, Montréal.

  • Steele J.M. and Stine R.A. 1991. Applications of Mathematica to the stochastic calculus. In: ASA Proceedings of the Statistical Computing Section. American Statistical Association, Washington DC, pp. 11-19.

    Google Scholar 

  • Steele J.M. and Stine R.A. 1993. Mathematica and diffusions. In:Varian H. (Ed.), Economic and Financial Modeling with Mathematica. Springer Verlag, New York, pp. 192-213.

    Google Scholar 

  • Talay D. 1994. Presto: A software package for the simulation of diffusion processes. Statistics and Computing 4(4): 247-252.

    Google Scholar 

  • Valkeila E. 1991a. Computer algebra and stochastic analysis–some possibilities. CWI Newsletter 4: 229-238.

    Google Scholar 

  • Valkeila E. 1991b. Some remarks on computerized stochastic analysis. In: Apiola H., Laine M., and Valkeila E. (Eds.), Proceedings of the Workshop on Symbolic and Numeric Computation. Computing Centre, University of Helsinki, Helsinki, pp. 173-175.

    Google Scholar 

  • Watkins J.C. 1998. Mechanical models for cell movement-locomotion, translocation, migration. Journal of Applied Probability 34(4): 827-846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendall, W.S. Symbolic Itô calculus in AXIOM: An ongoing story. Statistics and Computing 11, 25–35 (2001). https://doi.org/10.1023/A:1026553731272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026553731272

Navigation