Skip to main content
Log in

Hydrogen coevolution and permeation in nickel electroplating

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel coatings were electrodeposited onto a steel membrane in a conventional Devanathan cell in order to measure the diffusion rate of hydrogen into the steel substrate during electrodeposition. In most cases a Watts' solution containing various organic additives was used: butyne-2 diol-1, 4; saccharine or thiourea. The structure of the electrodeposits was studied by X-ray and Transmission electron microscopy (TEM). It was shown that the electrodeposition parameters (pH, composition of the bath, additives) have a strong effect on hydrogen permeation. The use of organic additives during Ni plating increased the penetration of hydrogen into the substrate. In particular, sulfur-containing additives cause a fast initial increase of the permeation rate, which is attributable to a high surface concentration of Hads when steel is not totally covered with nickel. By performing permeation experiments with Ni coatings during hydrogen charging from a H2SO4 solution, it was shown that hydrogen permeation through nickel coatings is influenced by their fibre texture and by their grain sizes. A low permeation rate was observed in coatings plated in the presence of butyne-2 diol-1,4, which exhibit a strong 100 texture with large grains and a low density of defects. Conversely, the hydrogen diffusion rate is very high in coatings plated in the presence of thiourea or saccharine. These coatings exhibit a weak texture with very small grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Vagramian and Z.A. Soloveva, ‘Metodi issledovania electroosajdenia metallov’ (Izd. Academmii nauk, Moskva, 1960), p. 249 (in Russian).

    Google Scholar 

  2. Yu.Yu. Matulis (Ed.), ‘Bright Electrolytic Coatings’ (Mintis, Vilnius, 1969), p. 612 (in Russian).

    Google Scholar 

  3. Th.C. Franklin and J.R. Goodwyn, J. Electrochem. Soc. 109 (1962) 288.

    Google Scholar 

  4. E. Mantzell, Z. Electrochem. 43 (1937) 174.

    Google Scholar 

  5. E. Raub and F. Sautter, Metalloberfläche 13 (1959) 129.

    Google Scholar 

  6. Ch.J. Raub, Plat. Surf. Finish. Sept. (1993) 30.

  7. E. Raub, A. Knödler, A. Disam and H. Kawase, Metalloberfläche 23 (1969) 293.

    Google Scholar 

  8. M. Monev, M.E. Baumgärtner and Ch.J. Raub, Metalloberfläche 51 (1997) 328.

    Google Scholar 

  9. A. Knödler, Metalloberfläche 40 (1986) 515.

    Google Scholar 

  10. T. Boniszewski and G. Smith, J. Phys. Chem. Solids 21 (1961) 115.

    Google Scholar 

  11. R.Y. Rokes and R.H. Emmett, J. Am. Chem. Soc. 81 (1959) 5032.

    Google Scholar 

  12. O.C. Popova and K.M. Gorbunova, J. Phizicheskoi Himii 32 (1958) 2020 (in Russian).

    Google Scholar 

  13. A.L. Rotinian and E.Sh. Ioffe, J. Prikladnoi Himii 33 (1960) 362 (in Russian).

    Google Scholar 

  14. C.M. Beloglazov, ‘Hydrogenation of Steel During Electrochemical Processes’ (Leningrad University Press, Leningrad, 1975), p. 278 (in Russian).

    Google Scholar 

  15. Th.C. Franklin, Plat. Surf. Finish. Apr. (1994) 62.

  16. M.H. Abd Elhamid, B.G. Ateya and H.W. Pickering, J. Electrochem. Soc. 144 (1997) L58.

    Google Scholar 

  17. I. Epelboin, M. Froment and G. Maurin, 19th Meeting of the International Committee of Electrochemical Thermodynamics and kinetics (C.I.T.C.E.), Detroit, MI, Sept. (1968), p. 1.

  18. J. Amblard, I. Epelboin, M. Froment and G. Maurin, J. Appl. Electrochem. 9 (1979) 233.

    Google Scholar 

  19. C. Kollia, N. Spyrellis, J. Amblard, M. Froment and G. Maurin, J. Appl. Electrochem. 20 (1990) 1025.

    Google Scholar 

  20. W. Paatsch, Plat. Surf. Finish. Aug. (1988) 52.

  21. M. Monev, L. Mirkova, I. Krastev, Hr. Tsvetkova, St. Rashkov and W. Richtering, J. Appl. Electrochem. 28 (1998) 1107.

    Google Scholar 

  22. M.A.V. Devanathan and Z. Stachurski, Proc. Roy. Soc. Lond. A 270 (1962) 90.

    Google Scholar 

  23. L. Mirkova, G. Maurin, I. Krastev and Hr. Tsvetkova, J. Appl. Electrochem. 31 (2001) 647.

    Google Scholar 

  24. G. Maurin, L. Mirkova and M. Monev, Proceedings of the Third InternationalCongress on ‘Mechanical Engineering Technologies’ 01', Ed. Sci. Technol. Union of Mechanic. Engineering, Sofia, 24–26. June (2001), JanVIII, 2(57), p. 298.

    Google Scholar 

  25. H. Liebscher, Jahrbuch Oberflächentechnik 52 (1999) 31.

    Google Scholar 

  26. E. Raub and K. Muller, Metalloberfläche 18 (1964) 161.

    Google Scholar 

  27. M.A.V. Devanathan, Z. Stachurski and W. Beck, J. Electrochem. Soc. 110 (1963) 886.

    Google Scholar 

  28. S. Venkatesan, R. Subramanian and M.A.V. Devanathan, Metal Finish. May (1966) 50.

  29. E.G. Dafft, K. Bohnenkamp and H.J. Engell, Corros. Sci. 19 (1979) 591.

    Google Scholar 

  30. J. Amblard, M. Froment and N. Spyrellis, Surf. Technol. 5 (1977) 205

    Google Scholar 

  31. J. Amblard, G. Maurin, D. Mercier and N. Spyrellis, Scripta Met. 16 (1982) 579.

    Google Scholar 

  32. R.M. Latanision and H. Opperhauser, J. Met. Trans. 5 (1974) 483.

    Google Scholar 

  33. M. Smialowski, Zashtita Metallov 3(3) (1967) 267 (in Russian).

    Google Scholar 

  34. B.E. Conway and G. Jerkiewicz, J. Electroanal. Chem. 357 (1993) 47.

    Google Scholar 

  35. D. Engelhaupt, US Patent US 4 290 858 (22 Sept. 1981).

  36. R.M. Latanision and M. Kurkela, Corrosion 39(5) (1983) 174.

    Google Scholar 

  37. S.M. Bruemmer, R.H. Jones, M.T. Thomas and D.R. Baer, Scripta Met. 14 (1980) 1233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mirkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkova, L., Maurin, G., Monev, M. et al. Hydrogen coevolution and permeation in nickel electroplating. Journal of Applied Electrochemistry 33, 93–100 (2003). https://doi.org/10.1023/A:1022957600970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022957600970

Navigation