Skip to main content
Log in

Synthesis and Characterization of Sol-Gel Cu-ZrO2 and Fe-ZrO2 Catalysts

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fe-ZrO2 and Cu-ZrO2 xerogels were prepared by a sol-gel method. The effect of the hydrolysis catalyst during the gelation step, namely H2SO4 or NH4OH, on the properties of the resulting materials was investigated by XRD, BET, TGA/DTA, TPD of ammonia, FTIR, and TPR. Fe-ZrO2 and Cu-ZrO2 xerogels, with sulfuric acid introduced as the hydrolysis catalyst, mainly crystallyzed in the tetragonal phase and exhibited larger surface area and acid amount than those obtained with NH4OH. Ammonia TPD shows that copper promoted sulfated zirconia is the most acidic material. TGA and FTIR reveal that under oxidizing conditions sulfated zirconia promoted with iron and copper retains more sulfate species than unpromoted sulfated zirconia. Regardless of the hydrolysis catalyst employed, copper promoted catalysts calcined at 600°C, contain a large fraction of copper oxide specieseasily reduced at low temperatures. These copper oxide species are believed to have different environment and interactions with the surface oxygen vacancies of the zirconia support. A FeO-like phase appears to be the most probable one after reduction of Fe-ZrO2 catalysts prepared with NH4OH as the hydrolysis catalyst. The formation of Fe° species may be hindered by the high dispersion and interaction of Fe2+ ions with the zirconia support. On the other hand, the reduction peaks of iron oxide and sulfate species exhibit a considerable overlap in the TPR profiles of sulfated Fe-ZrO2 samples. Hence, the nature of the supported phase in the latter samples is rather uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Srinivasan, T.R. Watkins, C.R. Hubbard, and B. Davis, Chem. Mat. 7, 725 (1995).

    Google Scholar 

  2. R.A. Comelli, C.V. Vera, and J.M. Parera, J. Catal. 151, 96 (1995).

    Google Scholar 

  3. M. Wakif, J. Bachelier, O. Saur, and J.C. Lavalley, J. Mol. Catal. 72, 127 (1992).

    Google Scholar 

  4. C. Morterra, E. Giamello, G. Cerrato, G. Centi, and P. Perathoner, J. Catal. 179, 111 (1998).

    Google Scholar 

  5. Y. Okamoto, H. Gotoh, T. Tanaka, and S. Yoshida, J. Chem. Soc. Faraday Trans. 93, 3879 (1997).

    Google Scholar 

  6. G. Centi, G. Cerrato, S. Dángelo, U. Finardi, E. Giamello, C. Morterra, and S. Perathoner, Catal. Today 27, 265 (1996).

    Google Scholar 

  7. L.A. Boot, A.J. van Dillen, J.W. Geus, and F.R. van Buren, J. Catal. 163, 186 (1996).

    Google Scholar 

  8. K. Chen, Y. Fan, Z. Hu, and Q. Yan, Catal. Lett. 36, 139 (1996).

    Google Scholar 

  9. R.A. Koppel, C. Stoker, and A. Baiker, J. Catal. 179, 515 (1998).

    Google Scholar 

  10. G. Fetter, P. Bosch, T. López, and R. Gómez, in Actas Simposio Iberoamericano de Catálisis (Armonia Impresores, Bucaramanga, 1998), p. 2231.

    Google Scholar 

  11. R.D. Gonzalez, Bing-hui Li, R. Gómez, and T. López, in Actas XIV Simposio Iberoamericano de Catálisis (Universidad de Concepción, Chile, 1994), p. 1623.

    Google Scholar 

  12. A. Calafat, Preparation of Catalysts VII (Elsevier 118, Amsterdam, 1998), p. 837.

    Google Scholar 

  13. H. Armendariz, B. Coq, D. Tichit, R. Dutartre, and F. Figueras, J. Catal. 173, 345 (1998).

    Google Scholar 

  14. R. Zhou, T. Yu, X. Jiang, F. Chen, and X. Zheng, Appl. Surf. Sci. 148, 263 (1999).

    Google Scholar 

  15. J.F. Collins and J.F. Ferguson, J. Chem. Soc. 4, 4 (1968).

    Google Scholar 

  16. F. Lónyi and J. Valyon, J. Thermal Anal. 46, 211 (1996).

    Google Scholar 

  17. R. Srinivisan, R.A. Keogh, D.R. Milburn, and B.H. Davis, J. Catal. 153, 123 (1995).

    Google Scholar 

  18. P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, and J.R.H. Ross, Appl. Catal. 78, 79 (1991).

    Google Scholar 

  19. P. Berteau and B. Delmon, Catal. Today 5, 121 (1989).

    Google Scholar 

  20. G. Cerrato, F. Pinna, and M. Signoretto, J. Catal. 157, 109 (1995).

    Google Scholar 

  21. W. Dow, Y. Wang, and R. Huang, J. Catal. 160, 155 (1996).

    Google Scholar 

  22. W. Dow and R. Huang, J. Catal. 160, 171 (1996).

    Google Scholar 

  23. F. Figueras, B. Coq, E. Ensuque, D. Tachon, and G. Delahay, Catalysis Today 42, 117 (1998).

    Google Scholar 

  24. E. Guglielminotti, J. Phys. Chem. 98, 4884 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, L., Reyes, P. & de Correa, C.M. Synthesis and Characterization of Sol-Gel Cu-ZrO2 and Fe-ZrO2 Catalysts. Journal of Sol-Gel Science and Technology 25, 159–168 (2002). https://doi.org/10.1023/A:1019920531309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019920531309

Navigation