Skip to main content
Log in

Comparative study of aerogels nanostructured catalysts: Ni/ZrO2–SO4 2− and Ni/ZrO2–Al2O3–SO4 2−

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of Ni/ZrO2–SO4 2− and Ni/ZrO2–Al2O3–SO4 2− catalysts were prepared in one step by the sol–gel method and dried in hypercritical conditions of the solvent. The characteristic properties of those solids were investigated using many techniques: the XRD, the physisorption of N2, the IR, the UV–visible, and the X-ray photoelectron spectroscopy (XPS). Textural analysis reveals the mesoporosity of all the aerogel catalysts. Moreover, the addition of alumina to nickel sulfated zirconia at high calcination temperature increased twice the specific surface area, from 72 to 158 m2/g. XRD patterns show that nickel-promoted sulfated zirconia calcined at different temperature develops the tetragonal and the monoclinic ZrO2 phase, whereas the nickel sulfated zirconia alumina exhibits only the ZrO2 tetragonal phase. The addition of aluminum to nickel sulfated zirconia induces significant changes in symmetry of nickel by the migration of Ni ions from octahedral to tetrahedral coordination. XPS spectroscopy shows that the nickel in Ni/ZrO2–SO4 2− catalysts is more reducible than those in Ni/ZrO2–Al2O3–SO4 2−. Nickel sulfated zirconia catalyst exhibits higher activity than nickel sulfated zirconia alumina, in the n-hexane isomerization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis BH, Keogh RA, Srinivasan R (1994) Catal Today 20:219

    Article  CAS  Google Scholar 

  2. Song X, Sayari A (1996) Catal Rev Sci Eng 38:329

    Article  CAS  Google Scholar 

  3. Sun Y, Ma S, Du Y, Yuan L, Wang S, Yang J, Deng F, Xiao FS (2005) J Phys Chem B 109:2567

    Article  CAS  Google Scholar 

  4. Mejri I, Younes MK, Ghorbel A, Eloy P (2006) Stud Surf Sci Catal 162:953

    Article  CAS  Google Scholar 

  5. Yang Y, Weng H (2009) J Mol Catal 304:65

    Article  CAS  Google Scholar 

  6. Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2012) J Porous Mater 19:375

    Article  CAS  Google Scholar 

  7. Raissi S, Younes MK, Ghorbel A, Garin F (2010) J Sol-Gel Sci Technol 19:819

    Google Scholar 

  8. Hsu CY, Heimbuch CR, Armes CT, Gates BC (1992) J Chem Soc Chem Commun 22:1645

    Article  Google Scholar 

  9. Song SX, Mcintosh DJ, Kydd RA (2000) Catal Lett 65:5

    Article  CAS  Google Scholar 

  10. Gao Z, Xia YD, Hua WM, Miao CX (1998) Top Catal 6:101

    Article  CAS  Google Scholar 

  11. Yu GX, Zhou XL, Tang C, Li CL, Wang JA, Novaro O (2008) Catal Commun 9:1770

    Article  CAS  Google Scholar 

  12. Olindo R, Pinna F, Strukul G, Canton P, Riello P, Cerrato G, Meligrana G, Morterra C (2000) Stud Surf Sci Catal 130:2375

    Article  Google Scholar 

  13. Kim SY, Lohitharn N, Goodwin JG, Olindo R, Pinna F, Canton P (2006) Catal Commun 7:209

    Article  CAS  Google Scholar 

  14. Wang JH, Mou CY (2008) Catal Today 131:162–172

    Article  CAS  Google Scholar 

  15. Sun Y, Walspurger S, Louis B, Sommer J (2005) Appl Catal 292:200

    Article  CAS  Google Scholar 

  16. Martin GA, Imelik B (1974) Surf Sci 42:157

    Article  CAS  Google Scholar 

  17. Pérez M, Armendariz H, Toledo JA, Vazquez A, Navarrete J, Montoya A, Garcia A (1999) J Mol Catal A 149:169

    Article  Google Scholar 

  18. Pérez M, Armendariz H, Toledo JA, Hernandez F, Armendariz H, Garcia A (2002) Catal Lett 83:201

    Article  Google Scholar 

  19. Mejri I, Younes MK, Ghorbel A (2006) J Sol-Gel Sci Technol 40(1):3

    Article  CAS  Google Scholar 

  20. Srinivasan R, Taulbee D, Davis BH (1991) Catal Lett 9:1

    Article  CAS  Google Scholar 

  21. Yang YC, Weng HS (2010) Appl Catal A Gen 384:94–100

    Article  CAS  Google Scholar 

  22. Gao Z, Chen JM, Hua WM, Tang Y (1994) Stud Surf Sci Catal 90:507

    Article  CAS  Google Scholar 

  23. IUPAC Recommendations (1994) Pure Appl Chem 66:1739

    Google Scholar 

  24. Tzompantzi FJ, Manriquez ME, Padilla JM, Del Angel G, Gomez R, Mantilla A (2008) Catal Today 133–135:154

    Article  Google Scholar 

  25. Yamagushi T, Tanabe K, Kung YC (1986) Mater Chem Phys 16:67

    Article  Google Scholar 

  26. Morterra C, Cerrato G, Signoretto M (1996) Catal Lett 36:129

    Article  Google Scholar 

  27. Vaudagna SR, Comelli RA, Fígoli NS (1996) React Kinet Catal Lett 58(1):111

    Article  CAS  Google Scholar 

  28. Pérez M, Cosultchi AH, Toledo JA, Aree EM (2005) Catal Lett 102:205

    Google Scholar 

  29. Pérez M, Toledo JA, Rosas R, Montaya A (2004) Catal Lett 97:59

    Article  Google Scholar 

  30. Abu II, Das DD, Mishra HK, Dalai AK (2003) J Colloid Interface Sci 267(2):382

    Article  CAS  Google Scholar 

  31. Signoretto M, Pinna F, Strukul G, Chies P (1997) J Catal 167:522

    Article  CAS  Google Scholar 

  32. Babou F, Coudurier G, Vedrine JC (1995) J Catal 152:341

    Article  CAS  Google Scholar 

  33. Yamaguchi T, Jin T, Tanabe K (1986) J Phys Chem 90:31

    Article  Google Scholar 

  34. Mishra MK, Tyagi B, Jasra RV (2003) Ind Eng Chem Res 42(23):5727

    Article  CAS  Google Scholar 

  35. Bensitel M, Sauer O, Lavelly JC, Morrow BA (1988) Mater Chem Phys 19:147

    Article  CAS  Google Scholar 

  36. Chackalackal S, Staffort FE (1966) J Am Chem Soc 88:723

    Article  CAS  Google Scholar 

  37. Castellon ER, Lopez AJ, Torres PM (2003) J Solid State Chem 175:159

    Article  Google Scholar 

  38. Barbara SK, Friederike CJ, Robert S (2005) J Catal 68:233

    Google Scholar 

  39. Lee KM, Lee WY (2002) Catal Lett 83:6

    Google Scholar 

  40. Kim SY, Goodwin JG, Hammache S, Auroux A, Galloway D (2001) J Catal 201:1

    Article  CAS  Google Scholar 

  41. Shibiao R, Jinheng Q, Chunyan W, Bolian X, Yining F, YiChin C (2007) J Catal 28(7):651

    Google Scholar 

  42. Fonseca RL, González CJ, de Rivas B, Ortiz JIG (2012) Appl Catal A Gen 437–438:53–62

    Article  Google Scholar 

  43. Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159

    Article  CAS  Google Scholar 

  44. Morant C, Sanz JM, Galán L, Soriano L, Rueda F (1989) Surf Sci 218:331

    Article  CAS  Google Scholar 

  45. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) J Mol Catal A 219:87

    Article  CAS  Google Scholar 

  46. Wagner CD, Moulder JF, Davis LE, Riggs WM, Muilenburg GE. Perking-Elmer corporation, Physical Electronics Division

  47. Briggs D, Seah MP (1993) John Willey and Sons, 2nd edn. 1:150

  48. Stichert W, Schüth F (1998) J Catal 174:242

    Article  CAS  Google Scholar 

  49. Belido AF, Ivanova AS, Pakhomov NA, Volodin AM (2000) J Mol Catal A 158:409

    Article  Google Scholar 

  50. Jentoft XGFC, Jentoft RE, Girgsdies F, Ressler T (2002) Catal Lett 81:25

    Article  Google Scholar 

  51. Ishida T, Yamaguchi T, Tanabe K (1988) Chem Lett 1869

  52. Song SX, Kydd RA (1998) Catal Lett 51:95

    Article  CAS  Google Scholar 

  53. Moreno JA, Poncelet G (2001) Appl Catal A Gen 210:151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kamoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamoun, N., Younes, M.K., Ghorbel, A. et al. Comparative study of aerogels nanostructured catalysts: Ni/ZrO2–SO4 2− and Ni/ZrO2–Al2O3–SO4 2− . Ionics 21, 221–229 (2015). https://doi.org/10.1007/s11581-014-1168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1168-2

Keywords

Navigation