Skip to main content
Log in

Phase relations in the system Cu-La-O and thermodynamic properties of CuLaO2 and CuLa2O4

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+δ were found to be stable. The value of δ varies from close to zero at the dissociation partial pressure of oxygen to 0.12 at 0.1 MPa. The ternary oxide CuLaO2, with copper in monovalent state, coexisted with Cu, Cu2O, La2O3, and/or CuLa2O4+δ in different phase fields. The compound CuLa2O4+δ, with copper in divalent state, equilibrated with Cu2O, CuO, CuLaO2, La2O3, and/or O2 gas under different conditions at 1200 K. Thermodynamic properties of the ternary oxides were determined using three solid-state cells based on yttria-stabilized zirconia as the electrolyte in the temperature range from 875 K to 1250 K. The cells essentially measure the oxygen chemical potential in the three-phase fields, Cu + La2O3 + CuLaO2, Cu2O + CuLaO2 + CuLa2O4 and La2O3 + CuLaO2 + CuLa2O4. Although measurements on two cells were sufficient for deriving thermodynamic properties of the two ternary oxides, the third cell was used for independent verification of the derived data. The Gibbs energy of formation of the ternary oxides from their component binary oxides can be represented as a function of temperature by the equations:

$$\begin{gathered} {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}{\text{Cu}}_{\text{2}} {\text{O + }}{{\text{1}} \mathord{\left/ {\vphantom {{\text{1}} {2{\text{La}}_{\text{2}} {\text{O}}_{\text{3}} \left( {{\text{A}}\;{\text{rare - earth}}} \right)}}} \right. \kern-\nulldelimiterspace} {2{\text{La}}_{\text{2}} {\text{O}}_{\text{3}} \left( {{\text{A}}\;{\text{rare - earth}}} \right)}} \to {\text{CuLaO}}_{\text{2}} \hfill \\ \Delta _{{\text{f,OX}}} {{G^\circ } \mathord{\left/ {\vphantom {{G^\circ } {{\text{Jmol}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{Jmol}}^{{\text{ - 1}}} }} = - 4335 + 1.32{T \mathord{\left/ {\vphantom {T {\text{K}}}} \right. \kern-\nulldelimiterspace} {\text{K}}}\,\left( { \pm 45} \right) \hfill \\ {\text{CuO + La}}_{\text{2}} {\text{O}}_{\text{3}} \left( {{\text{A}}\;{\text{rare - earth}}} \right) \to {\text{CuLa}}_{\text{2}} {\text{O}}_{\text{4}} \hfill \\ \Delta _{{\text{f,OX}}} {{G^\circ } \mathord{\left/ {\vphantom {{G^\circ } {{\text{Jmol}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{Jmol}}^{{\text{ - 1}}} }} = - 19600 - 4.01{T \mathord{\left/ {\vphantom {T {\text{K}}}} \right. \kern-\nulldelimiterspace} {\text{K}}}\,\left( { \pm 240} \right) \hfill \\ \end{gathered}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. VON GRANDE, HK. MÜLLER BUSCHBAUM and M. SCHWEIZER, Z. Anorg. Allg. Chem. 428 (1977) 120.

    Article  Google Scholar 

  2. E. J. OPILA and H. L. TULLER, Mater. Res. Soc. Symp. Proc. 209 (1991) 867.

    Google Scholar 

  3. S. NISHIYAMA, N. KIEDA, K. SHINOZAKI, M. KATO and N. MIZUTANI, J. Ceram. Soc. Jpn. Inter. Ed. 97 (1989) 1114.

    Google Scholar 

  4. N. KIEDA, S. NISHIYAMA, K. SHINOZAKI and N. MIZUTANI, Solid State Ionics 49 (1991) 85.

    Article  Google Scholar 

  5. C. CHAILLOUT, S. W. CHEONG, Z. FISH, M. S. LEHMANN, M. MAREZIO, B. MOROSIN and J. E. SCHIRBER, Physica C 158 (1989) 183.

    Google Scholar 

  6. B. O. WELLS, Y. S. LEE, M. A. KASTNER, R. J. CHRISTIANSON, R. J. BIRGENEAU, K. YAMADA, Y. ENDOH and G. SHIRANE, Science 277 (1997) 1067.

    Article  Google Scholar 

  7. B. O. WELLS, R. J. BIRGENEAU, F. C. CHOU, Y. ENDOH, D. C. JOHNSTON, M. A. KASTNER, Y. S. LEE, G. SHIRANE, J. M. TRANQUADA and K. YAMADA, Z. Phys. B 100 (1996) 535.

    Article  Google Scholar 

  8. J. D. JORGENSON, B. DABROWSKI, S. PEI, D. G. HINK, L. SODERHOLM, B. MOROSIN, J. E. SCHIRBER, E. L. VENTURINI and D. S. GINLEY, Phys. Rev. B. 38 (1988) 11 337.

    Google Scholar 

  9. P. G. RADAELLI, J. D. JORGENSON, R. KLEB, B. A. HUNTER, F. C. CHOU and D. C. JOHNSTON, ibid. 49 (1994) 6239.

    Article  Google Scholar 

  10. YU. D. TRETYAKOV, A. R. KAUL and N. V. MAKUKHIN, J. Solid State Chem. 17 (1976) 183.

    Article  Google Scholar 

  11. M. S. CHANDRASEKHARAIAH, M. D. KARKHANAVALA and O. M. SREEDHARAN, High Temp. Sci. 11 (1979) 65.

    Google Scholar 

  12. A. N. PETROV, A. YU. ZUEV and V. A. CHEREPANOV, Russ. J. Phys. Chem. 62 (1988) 1613.

    Google Scholar 

  13. J. BULARZIK, A. NAVROTSKY, J. DICARLO, J. BRINGLEY, B. SCOTT and S. TRAIL, J. Solid State Chem. 93 (1991) 418.

    Article  Google Scholar 

  14. K. SUN, J. H. CHO, F. C. CHOU, W. C. LEE, L. L. MILLER and D. C. JOHNSTON, Phys. Rev. B. 43 (1991) 239.

    Article  Google Scholar 

  15. R. J. CAVA, T. SIEGRIEST, B. HESSEN, J. J. KRAJEWSKI, W. F. PECK, JR., B. BATTLOGG, H. TAKAGI, J. V. WASZCZAK and L. F. SCNEEMEYER, J. Solid State Chem. 94 (1991) 170.

    Article  Google Scholar 

  16. R. NORRESTAM, M. NYGREN and J.-O. BOVIN, Angew. Chem. Int. Ed. Engl. 30 (1991) 864.

    Article  Google Scholar 

  17. J. FOULTIER, P. FABRY and M. KLEITZ, J. Electrochem. Soc. 123 (1976) 204.

    Google Scholar 

  18. K. T. JACOB and T. MATHEWS, Ind. J. Tech. 28 (1990) 413.

    Google Scholar 

  19. K. T. JACOB and K. P. JAYADEVAN, J. Mater. Chem. 7 (1997) 2407.

    Article  Google Scholar 

  20. Idem., Mater. Sci. Eng. B 52 (1998) 134.

    Article  Google Scholar 

  21. Idem., Chem. Mater. 12 (2000) 1779.

    Article  Google Scholar 

  22. K. T. JACOB, G. M. KALE, and G. N. K. IYENGAR, Metall. Trans. B 20B (1989) 679.

    Google Scholar 

  23. K. T. JACOB and J. H. E. JEFFES, Trans. Inst. Min. Metall., Sec. C 80 (1971) C181.

    Google Scholar 

  24. Z. G. LI, H. H. FENG, Z. Y. YANG, A. HAMED, S. T. TING and P. H. HOR, Phys. Rev. Lett. 77 (1996) 5413.

    Article  PubMed  Google Scholar 

  25. D. C. JOHNSON, J. P. STOKES, D. P. GOSHORN and J. T. LEWANDOWSKI, Phys. Rev. B 36 (1987) 4007.

    Article  Google Scholar 

  26. A. WALTIAUX, J. C. PARK, J. C. GRENIER and M. POUCHARD, C. R. Acad Sci. 310 (1990) 1047.

    Google Scholar 

  27. J. C. GRENIER, F. ARROUY, J. P. LOCQUET, C. MONROUX, M. POUCHARD, A. VILLESUZANNE and A. WALTIAUX, “Phase Separation in Cuprate Superconductors,” edited by E. Sigmund and K. A. Muller (Springer-Verlag, Berlin, 1994) p. 236.

    Google Scholar 

  28. S. N. RUDDLESDEN and P. POPPER, Acta Crystallogr. 11 (1958) 54.

    Article  Google Scholar 

  29. R. J. CAVA, H. W. ZANDBERGEN, A. P. RAMIREZ, H. TAKAGI, C. T. CHEN, J. J. KRAJEWSKI, W. F. PECK JR., J. V. WASZCZAK, G. MEIGS, R. S. ROTH and L. F. SCNEEMEYER, J. Solid State Chem. 104 (1993) 437.

    Article  Google Scholar 

  30. K. T. JACOB and J. H. E. JEFFES, Trans. Inst. Min. Metall., Sec. C 80 (1971) C32.

    Google Scholar 

  31. K. T. JACOB and C. B. ALCOCK, J. Amer. Ceram. Soc. 8 (1975) 192.

    Google Scholar 

  32. K. P. JAYADEVAN and K. T. JACOB, High Temp. Mater. Process. 19 (2000) 389.

    Google Scholar 

  33. L. B. PANKRATZ, Thermodynamic Properties of Elements and Oxides, U. S. Department of the Interior, Bureau of Mines Bull. 672, 1982, p. 214.

  34. Z. DU, Y. XU and W. ZHANG, J. Alloys and Compds. 289 (1999) 88. Received 14 February and accepted 11 December 2001 1620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, K.T., Jayadevan, K.P. Phase relations in the system Cu-La-O and thermodynamic properties of CuLaO2 and CuLa2O4 . Journal of Materials Science 37, 1611–1620 (2002). https://doi.org/10.1023/A:1014957910889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014957910889

Keywords

Navigation