Skip to main content
Log in

FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.

    Google Scholar 

  2. Lemmen, C., Lengauer, T. and Klebe, G., J. Med. Chem., 41 (1998) 4502.

    Google Scholar 

  3. Miller, M.D., Sheridan, R.P. and Kearsley, S.K., J. Med. Chem., 42 (1999) 1505.

    Google Scholar 

  4. Lemmen, C., Hiller, C. and Lengauer, T., J. Comput. Aid. Mol. Des., 11 (1997) 357.

    Google Scholar 

  5. Klebe, G., Mietzner, T. and Weber, F., J. Comput. Aid. Mol. Des., 8 (1994) 751.

    Google Scholar 

  6. Kearsley, S.K. and Smith, G.M., J. Comput. Aid. Mol. Des., 8 (1994) 565.

    Google Scholar 

  7. McMartin, C. and Bohacek, R.S., J. Med. Chem., 42 (1999) 1505.

    Google Scholar 

  8. Handschuh, S., Wagener, M. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 38 (1998) 220.

    Google Scholar 

  9. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graph. Modeling, 15 (1997) 114.

    Google Scholar 

  10. Martin Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, J. and Pavlik, P.A., J. Comput. Aid. Mol. Des., 7 (1993) 83.

    Google Scholar 

  11. Willett, P., J. Mol. Recog., 8 (1995) 290.

    Google Scholar 

  12. Jones, G., Willett, P. and Glen, R.C., J. Comput. Aid. Mol. Des., 9 (1995) 532.

    Google Scholar 

  13. Thorner, D.A., Wild, D.J., Willett, P. and Wright, P.M., J. Chem. Inform. Comput. Sci., 36 (1996) 900.

    Google Scholar 

  14. Wild, D.J. and Willett, P., J. Chem. Inform. Comput. Sci., 36 (1996) 159.

    Google Scholar 

  15. Thorner, D.A., Willett, P., Glen, R.C., Wright, P.M. and Taylor, R., J. Comput. Aid. Mol. Des., 1 (1997) 163.

    Google Scholar 

  16. Klebe, G., in Kubinyi, H. (ed.), 3D QSAR in Drug Design, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  17. Kim, K.H., list of comfa references 1993–1997, In Kubinyi, H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR in Drug Design, Vol. 3, Kluwer, Dordrecht, 1998, pp. 317–338.

    Google Scholar 

  18. Klebe, G., comparative molecular similarity indicies analysis, in Kubinyi, H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR in Drug Design, Vol. 3. Kluwer, Dordrecht, 1998, pp. 87–104.

    Google Scholar 

  19. Good, A.C. and Mason, J.S., three-dimensional structure database searches, in Lipkowitz, K.B. and Boyd, D.B. (eds), Reviews in Computational Chemistry, Vol. 7, chapter 2. VCH Publishers, New York, NY, 1996, pp. 67–117.

    Google Scholar 

  20. Kubinyi, H., similarity and dissimilarity: A medicinal chemist's view, in Kubinyi, H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR in Drug Design, Vol. 3. Kluwer, Dordrecht, 1998, pp. 317–338.

    Google Scholar 

  21. Klebe, G. and Mietzner, T., J. Comput. Aid. Mol. Des., 8 (1994) 583.

    Google Scholar 

  22. Kearsley, S.K., Underwood, D.J., Sheridan, R.P. and Miller, M.D. J. Comput. Aid. Mol. Des., 8 (1994) 565.

    Google Scholar 

  23. Hahn, M., J. Chem. Inf. Comput. Sci., 37 (1996) 80.

    Google Scholar 

  24. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  25. Böhm, H.J., J. Comput. Aided. Mol. Des., 6 (1992) 61.

    Google Scholar 

  26. Douglas, B.E., McDaniel, D.H. and Alexander, J., Concepts and Models of Inorganic Chemistry. John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

  27. Karplus, M. and Porter, R.N., Atoms and Molecules. W. A. Benjamin, Inc., Menlo Park, CA, 1971.

    Google Scholar 

  28. Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis. John Wiley & Sons, New York, NY, 1973.

    Google Scholar 

  29. IBM, Poughkeepsie, NY. Engineering and Scientific Subroutine Library for AIX, Version 3, Guide and Reference, 1997.

  30. Stockman, G., Comput. Vision Graphics Image Proc., 40 (1987) 361.

    Google Scholar 

  31. NAG Ltd., Oxford, UK, The NAG Fortran Library Manual, Mark 16, 1993.

  32. Jain, A.K. and Dubes, R.C., Algorithms for Clustering Data. Prentice Hall, New York, NY, 1988.

    Google Scholar 

  33. Curtis, W.D., Janin, A.L. and Zikan, K., a note on averaging rotations, in IEEE Virtual Reality Annual International Symposium, pp. 377–385. IEEE, 1993.

  34. Arun, K.S., Huang, T.S. and Blostein, S.D., Least-square fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9 (5), 1987, pp. 698–700.

    Google Scholar 

  35. Carbo, R., Leyda, L. and Arnaua, M., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  36. Good, A.C. and Richards, W.G., Explicit calculation of 3d molecular similarity, in Kubinyi, H., Folkers, G. and Martin, Y.C. (eds), 3D QSAR in Drug Design, Vol. (1988) 3664.

  37. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  38. Program Cerius2, distributed by Molecular Simulations Inc., 9685 Scranton Rd. San Diego CA 92121–3752.

  39. Dunn, W.J. III, Hopfinger, A.J., Cantana, C. and Duraiswami, C., J. Med. Chem., 39 (1996) 4825.

    Google Scholar 

  40. Crippen, G.M., J. Med. Chem., 23 (1980) 599.

    Google Scholar 

  41. Mayo, S.L., Olafson, B.D. and Goddard III, W.A., J. Phys. Chem., 94 (1990) 8897.

    Google Scholar 

  42. Mulliken 2.0: Rice, J.E., Horn, H., Lengsfield III, B.H., McLean, A.D., Carter, J.T., Replogle, E.S., Barnes, L.A., Maluendes, S.A., Lie, G.C., Gutowski, M., Rudge, W.E., Sauer, P.A., Lindh, R., Andersson, K., Chevalier, T.S., Widmark, P.-O., Bouzida, D., Pacansky, J., Singh, K., Gillan, C.J., Carnevali, P., Swope, W.C., Liu, B., IBM Almaden Research Center, San Jose CA, 1996.

  43. Lide, D.R., CRC Handbook of Chemistry and Physics, 75th edition, 1994, pp. 9–31.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitman, M.C., Huber, W.K., Horn, H. et al. FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules. J Comput Aided Mol Des 15, 587–612 (2001). https://doi.org/10.1023/A:1011921423829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011921423829

Navigation