Skip to main content
Log in

An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An extremophilic bacterium, isolated from mangrove detritus, produced an extracellular alkaline-thermostable lipase. The bacterium was identified on the basis of cell morphology, growth characteristics, G + C molar ratio and DNA/DNA hybridization as a strain of Bacillus alcalophilus. The bacterium grew optimally at pH 10.6, 60 °C with NaCl tolerance up to 7.5% (w/v). Carbonates and/or bicarbonates enhanced lipase production, while NaCl had an inhibitory effect. Maximum lipase activity was at 60 °C at pH 10.6, with approx. 60% of its activity being retained at 80 °C after 20 min and 80% of its activity was retained at pH 11 after incubation at 60 °C. A partially purified lipase had similar stabilities to the crude enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammar, M.S. & McDaniel, L.E. 1984 Lipase production by Bacillus stearothermophilus S-203 in shake flasks. Zentralblatt für Mikrobiologie 139, 61-68.

    Google Scholar 

  • Crosa, J.H., Brenner, D.J. & Falkow, S. 1973 Use of a single-strand speci®c nuclease for analysis of bacterial and plasmid deoxyribo-nucleic acid homo-and heteroduplexes. Journal of Bacteriology 115, 904-911.

    Google Scholar 

  • De Ley, J. 1970 Reexamination of the association between melting point, buoyant density and chemical base composition of deoxynucleic acid. Journal of Bacteriology 101, 738-754.

    Google Scholar 

  • De Ley, J. & Van Muylem. 1963 Some application of deoxynucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek Journal of Microbiology and Serology 29, 344-358.

    Google Scholar 

  • Emanuilova, E., Kambourova, M., Dekosvka, M. & Manolov, R. 1993 Thermoalkalophilic lipase producing Bacillus selected by continuous cultivation. FEMS Microbiology Letters 108, 247-250.

    Google Scholar 

  • Fahmy, F., Flossdorf, J. & Claus, D. 1985 The DNA base composition of the type strains of the Genus Bacillus. Systematic and Applied Microbiology 6, 60-65.

    Google Scholar 

  • Fritze, D., Flossdorf, J. & Claus, D. 1990 Taxonomy of alkaliphilic Bacillus strains. International Journal of Systematic Bacteriology 40, 92-97.

    Google Scholar 

  • Gilbert, E.J., Drodzd, J.W. & Jones, C.W. 1991 Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. Journal of General Microbiology 137, 2215-2221.

    Google Scholar 

  • Grimont, P.A.D., Grimont, F. & Starr, M.P. 1978 Serratia proteamaculans (Paine & Stansfield) comb nov. a senior subjective synonym of Serratia liquefaciens (Grime & Hennrty) Bascomb et al. International Journal of Systematic Bacteriology 28, 503-510.

    Google Scholar 

  • Grimont, P.A.D., Popo., M.Y., Grimont, F., Coyanult, C. & Lemelin, M. 1980 Reproducibility and correlation study of three deoxynucleic acid hybridization procedures. Current Microbiology 4, 325-330.

    Google Scholar 

  • Horikoshi, K. 1971 Production of alkaline enzymes by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus no. A-40-2. Agricultural and Biological Chemistry 35, 1783-1791.

    Google Scholar 

  • Horikoshi, K. 1985 Problems of biotechnology and their solution -establishment and application of excretion systems. Chem. Econ. Eng. Rev. 17, 12-15.

    Google Scholar 

  • Horikoshi, K. 1988 Genetic applications of alkaliphilic microorganisms. In Microbes in Extreme Environments, eds. Herbert, R.A. & Codd, G.A. pp. 297-315. London: Academic Press. ISBN 0123414601.

    Google Scholar 

  • Horikoshi, K. & Akiba, T. 1982 Alkaliphilic Microorganisms: A New Microbial World. Japan Scientific Societies Press. ISBN 4-7622-0305-9.

  • Khyami-Horani, H. 1996 Thermotolerant strain of Bacillus licheniformis producing lipase. World Journal of Microbiology and Biotechnology 12, 399-401.

    Google Scholar 

  • Lesuisse, E., Schanck, K. & Colson, C. 1993 Purification and preliminary characterization of extracellular lipase of Bacillus subtilis 168, an extremely basic pH tolerant enzyme. European Journal of Biochemistry 216, 155-160.

    Google Scholar 

  • Liu, W.P., Beppu, T. & Arima, K. 1973 Purification and general properties of the lipase of thermophilic fungus, Humicola lenuginosa. Agricultural and Biological Chemistry 37, 157-163.

    Google Scholar 

  • Marmur, J. 1961 A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3, 208-218.

    Google Scholar 

  • Marmur, J. & Dotty, P. 1962 Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5, 109-118.

    Google Scholar 

  • Moller, B., Vetter, R., Wilke, D. & Fowllois, B. 1991 Alkaline Bacillus lipases coding DNA sequences and bacilli which produce these lipases. Patent application Wo 91/16422.

  • Nadkarni, S.R. 1970 Studies on bacterial lipase. II. Study of the characteristics of partially purified lipase from Pseudomonas aeruginosa. Enzymologia 40, 302-313.

    Google Scholar 

  • Nagaoka, K. & Yamada, Y. 1973 Purification of Mucor lipases and their properties. Agricultural and Biological Chemistry 37, 2791-2796.

    Google Scholar 

  • Nantel, G. & Proulx, P. 1973 Lipase activity in E. coli. Biochimica et Biophysica Acta 316, 156-161.

    Google Scholar 

  • Newmark, P. 1988 Two European companies market lipases. Bio/Technology 369, 134-138.

    Google Scholar 

  • Oi, S., Sawada, A. & Satomura, Y. 1967 Purification and some properties of two types of Penicillium lipases, I and II, and conversion of types I and II under various modification conditions. Agricultural and Biological Chemistry 31, 1357-1366.

    Google Scholar 

  • Satomura, Y., Oi, S. & Sawada, A. 1958 Intracellular lipase formation by washed mycelium. Bulletin of the Agricultural Chemistry Society of Japan 23, 194-200.

    Google Scholar 

  • Sharp, R.J. & Munster, M.J. 1988 Biotechnological implications for microorganisms from extreme environments. In Microbes in Extreme Environments, eds. Herbert, R.A. & Codd, G.A. pp. 215-295. London: Academic Press. ISBN 0123414601.

    Google Scholar 

  • Skerman, V.B.D., McGowan, V. & Sneath, P.H.A. (eds) 1980 Approved lists of bacterial names. International Journal of systematic Bacteriology 30, 225-420.

  • Sneath, P.H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. 1986 Bergey's Manual of Systematic Bacteriology. Vol. 2, Baltimore, London, Los Angeles, Sydney: Williams & Wilkins. ISBN 0-68309061-5.

    Google Scholar 

  • Vedder, A. 1934 Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Antonie van Leeuwenhoek Journal of Microbiology and Serology 1, 143-147.

    Google Scholar 

  • Watanabe, N., Ota, Y., Minoda, Y. & Yamada, K. 1977 Isolation and identification of alkaline lipase producing microorganisms culture conditions and some properties of crude enzymes. Agricultural and Biological Chemistry 41, 1353-1358.

    Google Scholar 

  • Yamada, K., Machida, H., Higashi, T., Koide, A. & Ueda, K. 1963 Studies on the production of lipase by microorganisms. Part III. On the medium composition of Candida cylindracea. Bulletin of the Agricultural Chemistry Society of Japan 37, 645-648.

    Google Scholar 

  • Yamane, T. 1987 Enzyme technology for the lipid industry: an engineering overview. Journal of the American Oil Chemists Society 64, 1657-1662.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghanem, E.H., Al-Sayed, H.A. & Saleh, K.M. An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World Journal of Microbiology and Biotechnology 16, 459–464 (2000). https://doi.org/10.1023/A:1008947620734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008947620734

Navigation