Skip to main content
Log in

A Level Set Model for Image Classification

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present a supervised classification model based on a variational approach. This model is devoted to find an optimal partition composed of homogeneous classes with regular interfaces. The originality of the proposed approach concerns the definition of a partition by the use of level sets. Each set of regions and boundaries associated to a class is defined by a unique level set function. We use as many level sets as different classes and all these level sets are moving together thanks to forces which interact in order to get an optimal partition. We show how these forces can be defined through the minimization of a unique fonctional. The coupled Partial Differential Equations (PDE) related to the minimization of the functional are considered through a dynamical scheme. Given an initial interface set (zero level set), the different terms of the PDE's are governing the motion of interfaces such that, at convergence, we get an optimal partition as defined above. Each interface is guided by internal forces (regularity of the interface), and external ones (data term, no vacuum, no regions overlapping). Several experiments were conducted on both synthetic and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, G. and Vese, L. 1997. A variational method in image recovery. SIAM J. of Numerical Analysis, 34(5):1948–1979.

    Google Scholar 

  • Berthod, M., Kato, Z., Yu, S., and Zerubia, J. 1996. Bayesian image classification using Markov random fields. Image and Vision Computing, 14(4):285–293.

    Google Scholar 

  • Blake, A. and Zisserman, A. 1987. Visual Reconstruction. M.I.T. Press, Boston.

    Google Scholar 

  • Bouman, C.A. and Shapiro, M. 1994. A multiscale random field model for Bayesian image segmentation. IEEE Trans. on Image Processing, 3:162–177.

    Google Scholar 

  • Caselles, V., Catte, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours. Numerische Mathematik, 66:1–31.

    Google Scholar 

  • Caselles, V., Kimmel, R., and Sapiro, G. 1997. Geodesic active contours. International J. of Computer Vision, 22(1):61–79.

    Google Scholar 

  • Chan, T. and Vese, L. 1999. An active contour model without edges. In Proc. of IEEE ICCV, Corfu, Greece, Sept. 1999, pp. 141–151.

  • Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1997. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. on Image Processing, 6(2):298–311.

    Google Scholar 

  • Descombes, X., Morris, R., and Zerubia, J. 1997a. Some improvements to Bayesian image segmentation. Part one: Modelling (in French). Traitement du Signal, 14(4):373–382.

    Google Scholar 

  • Descombes, X., Morris, R., and Zerubia, J. 1997b. Some improvements to Bayesian image segmentation. Part two: Classification (in French). Traitement du Signal, 14(4):383–395.

    Google Scholar 

  • Evans, L.C. and Gariepy, R.F. 1992. Measure Theory and Fine Properties of Functions. CRC Press.

  • Evans, L.C. and Spruck, J. 1992. Motion of level sets by mean curvature. Part II. Trans. of the American Mathematical Society, 330(1):321–332.

    Google Scholar 

  • Fukunaga, K. 1972. Introduction to Statistical Pattern Recognition. Academic Press: New York.

    Google Scholar 

  • Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active contour models. International J. of Computer Vision, 1:321–331.

    Google Scholar 

  • Kato, Z. 1994. Multiresolution Markovian modeling for computer vision. Application to SPOT image segmentation (in French and English). Ph.D. Thesis, Université de Nice-Sophia Antipolis, France.

    Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A., Jr., 1996. Conformal curvature flows: From phase transitions to active vision. Arch. Rational Mech. Anal., 134:275–301.

    Google Scholar 

  • Kittler, J. 1975. Mathematical methods of feature selection in pattern recognition. Int. Journal Man-Machine Studies, 7:609–637.

    Google Scholar 

  • Lakshmanan, S. and Derin, H. 1989. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:799–813.

    Google Scholar 

  • Lorette, A. 1999. Analyse de texture par m´ethodes Markoviennes et par morphologie math´ematique: Application a l'analyse des zones urbaines sur des images satellitaires. Ph.D. Thesis, Université de Nice-Sophia Antipolis, France.

    Google Scholar 

  • Malladi, R., Sethian, J.A., and Vemuri, B.C. 1994. Evolutionary fronts for topology independent shape modeling and recovery. In Proc. of the 3rd ECCV, pp. 3–13, Stockholm, Sweden.

  • Manjunath, B. and Chellappa, R. 1991. Unsupervised texture segmentation using Markov random fields models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 13:478–482.

    Google Scholar 

  • March, R. 1992. Visual reconstruction using variational methods. Image and Vision Computing, 10:30–38.

    Google Scholar 

  • March, R. and Dozio, M. 1997. Avariational method for the recovery of smooth boundaries. Image and Vision Computing, 15:705–712.

    Google Scholar 

  • Morel, J.-M. and Solimini, S. 1995. Variational Methods in Image Segmentation. Birkhäuser, Boston.

  • Mumford, D. and Shah, J. 1985. Boundary detection by minimizing functionals. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition. San Francisco.

  • Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation. J. of Computational Physics, 79:12–49.

    Google Scholar 

  • Paragios, N. and Deriche, R. 1999a. Coupled geodesic active regions for image segmentation. INRIA Research Report RR-3783 (http://www.inria.fr/RRRT/RR-3783.html).

  • Paragios, N. and Deriche, R. 1999b. Geodesic active regions for supervised texture segmentation. In Proc. of ICCV, Corfu, Greece, Sept. 1999, pp. 926–932.

  • Pavlidis, T. and Liow, Y.-T. 1988. Integrating region growing and edge detection. In Proc. of IEEE CVPR.

  • Ronfard, R. 1994. Region-based strategies for active contour models. International J. of Computer Vision, 13(2):229–251.

    Google Scholar 

  • Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 1999. Multiphase evolution and variational image classification. INRIA Research Report RR-3662 (http://www.inria.fr/RRRT/RR-3662.html).

  • Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia J. 1999. Simultaneous image classification and restoration using a variational approach. In Proc. of IEEE CVPR, Fort-Collins, USA, June 1999.

  • Samson, C., Blanc-Féraud, L., Aubert, G., and Zerubia, J. 2000. A variational model for image classification and restoration. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(5):460–472.

    Google Scholar 

  • Sussman, M., Smereka, P., and Osher, S. 1994. A level set approach for computing solutions to incompressible two-phase flow. J. of Computational Physics, 114:146–159.

    Google Scholar 

  • Teboul, S., Blanc-Féraud, L., Aubert, G., and Barlaud, M. 1998. Variational approach for edge-preserving regularization using coupled PDE's. IEEE Trans. on Image Processing, 7(3):387–397.

    Google Scholar 

  • Teo, P.C., Sapiro, G., and Wandell, B.A. 1997. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. on Medical Imaging, 16(6):852–863.

    Google Scholar 

  • Yezzi, A., Jr., Tsai, A., and Willsky, A. 1999. A statistical approach to snakes for bimodal and trimodal imagery. In Proc. of ICCV, Corfu, Greece, Sept. 1999, pp. 898–903.

  • Zhao, H.-K., Chan, T., Merriman, B., and Osher, S. 1996. A variational level set approach to multiphase motion. J. of Computational Physics, 127:179–195.

    Google Scholar 

  • Zhu, S.C. and Yuille, A. 1996. Integrating region growing and edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 18(9):884–900.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samson, C., Blanc-Féraud, L., Aubert, G. et al. A Level Set Model for Image Classification. International Journal of Computer Vision 40, 187–197 (2000). https://doi.org/10.1023/A:1008183109594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008183109594

Navigation