Skip to main content
Log in

Nutrient flows and land use change in a rural catchment: a modelling approach

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Due largely to unprecedented land-use changes in the Porijõgi River catchment (southern Estonia) losses of nutrients and organic matter have decreased significantly. During the period 1987–1997 abandoned lands increased from 1.7 to 10.5% and arable lands decreased from 41.8 to 23.9%. At the same time, the runoff of total-N, total-P, SO4 and organic matter (after BOD5) decreased from 25.9 to 5.1, 0.32 to 0.13, 78 to 48, and 7.4 to 3.5 kg ha−1 yr−1, respectively. The most significant decreases occurred in agricultural subcatchments while the changes were insignificant in the forested upper course catchment. A simple empirical model which incorporates land-use pattern, fertilization intensity, soil parameters and water discharge accurately described the variations of total-N and total-P runoff in both the whole catchment and its agricultural subcatchments (R 2 varies from 0.95–0.99 for N to 0.49–0.93 for P). In small agricultural subcatchments the rate of fertilization is found the most important factor for nitrogen runoff, whereas in larger mosaic watersheds land use pattern plays the main role. Seven alternative scenarios compiled on the base of the empirical model allow to forecast potential nitrogen and phosphorus losses from the catchment. This information can be used in further landscape and regional planning of the whole region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, H.E., Kronvang, B. and Larsen, S.E. 1998. Agricultural practices and diffuse nitrogen pollution in Denmark: Empirical leaching and catchment models. In: Proceedings of the 3rd International Conference on Diffuse Pollution, Edinburgh, Scotland, 1 September 1998, IAWQ. Venue 2, pp. 177–184.

  • Andersen, J.M. 1994. Water quality management in the River Gudenaa, a Danish lake-stream-estuary system. Hydrobiologia 275/276: 499–507.

    Google Scholar 

  • APHA. 1981. Standard Methods for the Examination of Water and Waste Water, 15th edition, American Public Health Organization, Washington.

    Google Scholar 

  • Arheimer, B. and Wittgren, H.-B. 1994. Modeling the effects of wetlands on regional nitrogen transport. Ambio 23: 378–386.

    Google Scholar 

  • Arnold, J.G., Engel, B.A. and Srinivasan, R. 1993. A continuous time, grid cell watershed model. In Application of Advanced Information Technologies for Management of Natural Resources, 17–19 June, Spokane, Wash. St. Joseph, Mich., ASAE.

    Google Scholar 

  • Bastian, O. und Schreiber, K.-F. (Hrsgb.) 1994. Analyse und ökologische Bewertung der Landschaft. Gustav Fischer Verlag, Jena, Stuttgart, 502 S.

    Google Scholar 

  • Beasley, D.B., Huggins, L.F. and Monke, E.J. 1980. ANSWERS: A model for watershed planning. Trans. ASAE 23: 938–944.

    Google Scholar 

  • Bergström, S., Brandt, M. and Gardelin, M. 1987. Simulation of runoff and nitrogen leaching from two fields in southern Sweden. Hydrol. Sci. J., 32: 191–205.

    Google Scholar 

  • Bicknell, B.R., Donigian, A.S. and Barnwell, T.O. 1984. Modeling water quality and the effects of best managing practices in the Iowa River basin. Journal of Water Science Technol. 17: 1141–1153.

    Google Scholar 

  • Borah, D.K. 1989. Runoff simulation model for small watersheds. Transactions of the ASAE 32: 881–886.

    Google Scholar 

  • Dillaha, T.A., Sherrard, J.H. and Lee, D. 1989. Long-term effectiveness of vegetative filter strips. Water Environ. Technol. Nov.: 419–421.

  • EPA. 1992. Compendium of Watershed-Scale Models for TDML Development. United States Environmental Protection Agency, Office of Water, Washington D.C., EPA841-R-92-002.

    Google Scholar 

  • Fleischer, S. and Hamrin, S.F. 1988. Land use and nitrogen losses–a study within the Laholm Bay drainage area of Southwestern Sweden. Verh. Int. Verein. Limnol. 23: 181–192.

    Google Scholar 

  • Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. Wiley and Sons, New York, NY.

    Google Scholar 

  • Gilliam, J.W. 1994. Riparian wetlands and water quality. J. Environ. Qual. 23: 896–900.

    Google Scholar 

  • Grimvall, A., Stålnacke, P. and Tonderski, A. 1999. Timescales of nutrient losses from land to sea–a Europan perspective. Ecological Engineering (in press).

  • Jansson, M., Andersson, R., Berggren, H., and Leonardson, L. 1994. Wetlands and lakes as nitrogen traps. Ambio 23: 320–325.

    Google Scholar 

  • Joelsson, A. and Hoffmann, M. 1998. A catchment-oriented and cost-effective allocation of measures to reduce nitrogen leaching. In: Proceedings of the 3rd International Conference on Diffuse Pollution, Edinburgh, Scotland, 31 August–3 September 1998, IAWQ. Posters, pp. 149–154.

  • Johnston, C.A., Detenbeck, N.E. and Niemi, G.J. 1990. The cumulative effect of wetlands on stream water quality and quantity. A landscape approach. Biogeochemistry 10: 105–141.

    Google Scholar 

  • Jordan, T.E., Correll, D.L., Peterjohn, W.T. and Weller, D.E. 1986. Nutrient flux in a landscape: the Rhode River catchment and receiving waters. In Catchment Research Perspectives. pp. 57–76. Edited by D.L. Correll. Smithsonian Environmental Research Center. Edgewater, Maryland, USA, Smithsonian Institution Press, Washington DC, pp. 57–76.

    Google Scholar 

  • Kelly, J.M. 1988. Annual elemental input/output estimates for two forested watersheds in Eastern Tennessee. J. Environ. Qual. 17: 463–468.

    Google Scholar 

  • Kersebaum, K.C., Mirschel, W and Wenkel, K.-O. 1995. Estimation of regional nitrogen leaching in the North-Eastern Germany are for different land use scenarios. In Scenario Studies for the Rural Environment. pp. 117–124. Edited by J.F.Th. Schoute, P.A. Fincke, F.R. Veeneklaas and H.P. Wolfert. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kronvang, B., Ærtebjerg, G., Grant, R., Kristensen, P., Hovmand, M. and Kirkegaard, J. 1993. Nationwide monitoring of nutrients and their ecological effects: State of the Danish aquatic environment. Ambio 22: 176–187.

    Google Scholar 

  • Larsen, S.E., Kronvang, B., Windolf, J. and Svendsen, L.M. 1998. Trends in diffuse nutrient concentrations and loadings in Denmark: statistical trend analysis of stream monitoring data. In: Proceedings of the 3rd International Conference on Diffuse Pollution, Edinburgh, Scotland, 4 September 1998, IAWQ. Venue 1, pp. 184–195.

  • Lowrance, R. and Leonard, R.A. 1988. Streamflow nutrient dynamics on Coastal Plain watersheds. J. Environ. Qual. 17: 737–740.

    Google Scholar 

  • Lowrance, R., Leonard, R.A. and Sheridan, J. 1985. Managing riparian ecosystems to control nonpoint pollution. J. Soil Water Cons. 40: 87–97.

    Google Scholar 

  • Mander, Ñ., Metsur, M., and Külvik, M. 1989. Störungen des Stoffkreislaufs, des Energieflusses und des Bios als Kriterien für die Bestimmung der Belastung der Landschaft. Petermanns Geogr. Mitt., 4, 233–244.

    Google Scholar 

  • Mander, Ñ. and Palang, H. 1994. Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33: 45–54.

    Google Scholar 

  • Mander, Ñ., Kuusemets, V. and Ivask, M. 1995. Nutrient dynamics of riparian ecotones: A case study from the Porijõgi River catchment, Estonia. Landscape Urban Planning 31: 333–348.

    Google Scholar 

  • Mander, Ñ., Tamm, V., Kuusemets, V. and Karjus, R. 1996. Possible influence of climate change on runoff and nutrient losses in rural landscapes: Porijõgi River catchment, Estonia. In S. Obenauf und J. Rogasik (Hrsgb.) 1. Workshop Klimaveränderung und Landbewirtschaftung–Landwirtschaft als Verursacherin und Betroffene. Landbauforschung Völkenrode (Sonderheft) 165: 105–122.

  • Mander, Ñ., Kuusemets, V. Lõhmus, K. and Mauring, T. 1997. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecol. Eng. 8: 299–324.

    Google Scholar 

  • Mander, Ñ., Kull, A., Tamm, V., Kuusemets, V. and Karjus, R. 1998. Impact of climatic fluctuations and land use change on runoff and nutrient losses in rural landscapes. Landscape Urban Planning 41: 229–238.

    Google Scholar 

  • Miller, M.H. 1979. Contribution of nitrogen and phosphorus to subsurface drainage water from intensively cropped mineral and organic soils in Ontario. J. Environ. Qual. 8: 42–48.

    Google Scholar 

  • Mitsch, W.J. 1992. Landscape design and the role of created, restored, and natural riparian wetlands in controlling nonpoint source pollution. Ecol. Eng. 1: 27–47.

    Google Scholar 

  • Palang, H. 1998. Landscape Changes in Estonia: The Past and the Future. Dissertationes Geographicae Universitatis Tartuensis 6, Tartu, 142 p.

  • Peterjohn, W.T. and Correll, D.L. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65: 1466–1475.

    Google Scholar 

  • Raagmaa, G. and Terk, E. 1997. Eesti tulevikustsenaariumid. Eesti Keskkonnaministeerium, Eesti Tuleviku-uuringute Instituut. (Also available at http://www.e2010.ee).

  • Rekolainen, S., Posch, M., Kämäri, J. and Ekholm, P. 1991. Evaluation of the accuracy and precision of annual phosphorus load estimates from two agricultural basins in Finland. J. Hydrol. (Amst.) 128: 237–255.

    Google Scholar 

  • Ripl, W. 1995. Management of water cycle and energy flow for ecosystem control–The Energy-Transport-Reaction (ETR) model. Ecol. Modelling 78: 61–76.

    Google Scholar 

  • Sandner, E., Mannsfeld, K. and Bieler, J. 1993. Analyse und Bewertung der potentiellen Stickstoffauswaschung in Einzugsgebiet der Grossen Röder (Ostsachsen). Abhandlungen Sächsischen Akad. Wissenschaften Leipzig 58: 1–120.

    Google Scholar 

  • Shlosser, I.J. and Karr, J.R. 1981. Water quality in agricultural watersheds: Impact of riparian vegetation during baseflow. Water Res. Bull. 17: 233–240.

    Google Scholar 

  • Schreiber, J.D. and Neumaier, E.E. 1987. Biochemical oxygen demand of agricultural runoff. J. Environ. Qual. 16: 6–10.

    Google Scholar 

  • Varep, E. 1964. The landscape regions of Estonia. Publications on Geography IV. Acta Commentationes Universitatis Tartuensis 156: 3–28.

    Google Scholar 

  • Whigham, D.F., Chitterling, C. and Palmer, B. 1988. Impacts of freshwater wetlands on water quality: A landscape perspective. Environ. Manag. 12: 663–671.

    Google Scholar 

  • White, C., Hairston, J.R., Musser, W.N., Perkins, H.F. and Reed, J.F. 1981. Relationship between increased crop acreage and nonpoint source pollution: A Georgia case study. J. SoilWater Cons. 36: 172–177.

    Google Scholar 

  • Wischmeier, W.H. and Smith, D.C. 1978. Predicting Rainfall Erosion Losses–A Guide to Conservation Planning. USDA Agricultural Handbook No. 537. Washington, D.C., USDA.

    Google Scholar 

  • Yarbro, L., Kuenzler, E.J., Mulholland, P.J. and Sniffen, R.P. 1984. Effects of stream channelization on exports of nitrogen and phosphorus from North Carolina Coastal Plain watersheds. Environ. Manag. 8: 151–160.

    Google Scholar 

  • Young, R.A., Onstad, C.A., Bosch, D.D. and Anderson, W.P. 1987. AGNPS, Agricultural nonpoint source pollution model: A large watershed analysis tool. Cons. Serv. Report 35. Washington, D.C., USDA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mander, Ü., Kull, A. & Kuusemets, V. Nutrient flows and land use change in a rural catchment: a modelling approach. Landscape Ecology 15, 187–199 (2000). https://doi.org/10.1023/A:1008181811552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008181811552

Navigation