Skip to main content
Log in

Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Three species of microalgae able to produce eicosapentaenoic acid(EPA) were collected from brackish and sea water around Japan. The species were identified as Navicula saprophila, Rhodomonassalina and Nitzschia sp. EPA as a proportion of total fatty acids increased in the presence of acetic acid for Rhodomonas salina and Nitzschia sp. However, Navicula saprophila displayed the greatest productivity of EPA and the EPA content of its biomass was enhanced under mixotrophic conditions in the presence of acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotech. 30: 161–183.

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Chrismadha, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutumgrown in a tubular photobioreactor. J. appl. Phycol. 6: 67–74.

    Article  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: Correlation to growth rate. J. Phycol. 24: 328–332.

    CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi J, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom. Phytochemistry 35: 155–161.

    Article  CAS  Google Scholar 

  • Endo H, Hosoya H, Koibuchi T (1977) Growth yields of Chlorella regularisin dark heterotrophic continuous cultures using acetate. J. Ferment. Technol. 55: 369–379.

    CAS  Google Scholar 

  • Endo H, Nakajima K, Chino R (1974) Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agr. biol. Chem. 38: 9–18.

    Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile Red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 100: 965–973.

    Article  PubMed  CAS  Google Scholar 

  • Hill DRA (1991) A revised circumscription of Cryptomonasbased on examination of Australian strains. Phycologia 30: 170–188.

    Google Scholar 

  • Hill DRA, Wetherbee R (1989) A reappraisal of the genus Rhodomonas. Phycologia 28: 143–158.

    Google Scholar 

  • Krammer K, Lange-Bertalot H(1988) Bacillariophyceae 2. In Ettl H, Heyning H, Mollenhauer D (eds), Süsswasserflora von Mitteleuropa. Gustav Fischer, Stuttgart: 110–117.

    Google Scholar 

  • Lange-Bertalot H, Bonik K (1976) Massenentwicklung bisher seltener und unbekannter Diatomeen als Indikator für starke Abwasserbelastung in Flüssen. Arch.Hydrobiol., Suppl. 49: 303–332.

    Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis ofmixotrophic growth in Chlorella vulgarisand Scenedesmus acutus. Biotechnol. Bioengng. 23: 1121–1132.

    Article  CAS  Google Scholar 

  • Qiang H, Zhengyu H, Cohen Z, Richmond A (1997) Enhancement of EPA and gammalinolenic acid production by manipulating algal density of outdoor cultures of Monodus subterraneusand Spirulina platensis. Eur. J. Phycol. 32: 81–86.

    Article  Google Scholar 

  • Samejima H, Myers J (1958) On the heterotrophic growth of Chlorella pyrenoidosa. J. gen. Microbiol. 18: 107–117.

    PubMed  CAS  Google Scholar 

  • Sanchéz PJA (1994) N–3 Polyunsaturated fatty acid productivity of themarine microalgal Isochrysis galbana. Growth conditions and phenotypic selection. J. appl. Phycol. 6: 475–478.

    Article  Google Scholar 

  • Seto A, Wang HL, Hesseltine CW (1984) Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. JAOCS 61: 892–894.

    CAS  Google Scholar 

  • Tan CK and Johns MR (1996) Screening of diatom for heterotrophic eicosapentaenoic acid production. J. appl. Phycol. 8: 59–64.

    Article  CAS  Google Scholar 

  • Watanabe M, Nozaki H (1994) NIES-Collection,List of strains. National Institute for Environmental Studies, Environment Agency, Japan.

    Google Scholar 

  • Yongmanitchai W, Ward OP (1989) Omega-3 fatty acids: Alternative sources of production. Process Biochem. August: 117–125.

  • Yongmanitchai W, Ward OP (1994a) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutumunder different culture conditions. Appl. envir. Microbiol. 57: 419–425.

    Google Scholar 

  • Yongmanitchai W, Ward OP (1991b) Screening of algae for potential alternative source of eicosapentaenoic acid. Phytochemistry 30: 2963–2967.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, M., Matsukawa, R. & Karube, I. Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. Journal of Applied Phycology 9, 559–563 (1997). https://doi.org/10.1023/A:1007908618017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007908618017

Navigation