Skip to main content
Log in

Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers were used to characterize genetic relationships among 46 accessions in two C. melo L. subsp. melo (Cantalupensis, Inodorus) and subsp.agrestis (Conomon, and Flexuosus) groups. Genetic distance (GD) estimates were made among and between accessions in four melon market classes [Galia, Ogen, Charentais, and Shipper (European and U.S. types)] of Cantalupensis, one market class of Inodorus (Cassaba and Honey Dew), one accession of Conomon, and one accession of Flexuosus by employing three GD estimators; simple matching coefficient, Jaccard's coefficient, and Nei's distance-D. Differences detected among 135 RAPD bands and 54 SSR bands (products of 17 SSR primers) were used to calculate GD. Band polymorphisms observed with 21 RAPD primers and 7 SSR primers were important (p =0.01) in the detection of genetic differences. Estimators of GD were highly correlated (p 0.0001; rs = 0.64 to0.99) when comparisons were made between estimation methods within a particular marker system. Lower correlations (rs = 0.17 to 0.40) were detected (P > 0.001) between marker systems using any one estimator. The GD of the Conomon and Flexuosus accessions was significantly different (p> 0.001)from the mean GD of all the market classes examined. The mean GD (Jaccard's coefficient) among accessions of Ogen, Galia, Cassaba, Charentais, European shipper, and U.S. shipper groups was 0.11 ± 0.04, 0.33± 0.09, 0.21 ± 0.04, 0.26 ± 0.10, 0.17± 0.05 and 0.22 ± 0.08, respectively. Market classes were distinct (p > 0.001), such that GDs between Galia and other accessions were the largest(mean GD 0.34 to 0.35), and GDs between Ogen and other accessions were the smallest (mean GD 0.29 to 0.30). Contrasts between the U.S. shipper cultivar Top Mark and accessions within any market class was relatively large (mean GD = 0.42 ± 0.06). Empirical estimations of variances associated with each marker type in the accessions examined indicated that, per band, lower coefficients of variation can be attained in the estimation of GD when using RAPDs compared to SSRs. Nevertheless, the genetic relationships identified using these markers were generally similar. The disparity between the analyses of the two markers made may be related to the amount of genome coverage which is characteristic of a particular marker system and/or its efficiency in sampling variation in a population. Results of RAPD marker analysis suggest that 80 marker bands were adequate for assessing the genetic variation present in the accessions examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi, H., Y. Yokozeki, A. Inagaki and T. Fujimura, 1997. Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet 94: 61-67.

    Article  CAS  Google Scholar 

  • Baudracco-Arnas, S. and M. Pitrat, 1996. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93: 57-64.

    Article  CAS  Google Scholar 

  • Bailey, L.H. and E.Z. Bailey, 1976. Hortus Third, MacMillan Publishers, New York.

    Google Scholar 

  • Beckmann, J.S. and M. Soller, 1990. Marker-based mapping of quantitative trait lociusing replicated progenies. Theor Appl Genet 80: 205-208.

    Google Scholar 

  • Bretting, P.K. and M.P. Widerlechner, 1995. Genetic markers and horticulturalgermplasm management. HortScience 30: 1349-1356.

    Google Scholar 

  • Davies K, 1993. Of mice and men (and cows and cats). Nature 361: 478.

    Article  PubMed  CAS  Google Scholar 

  • Debener, T., F. Salamini and C. Gebhart, 1990. Phylogeny of wild and cultivatedSolanum species based on nuclear restriction fragment length polymorphisms (RFLPs). Theor Appl Genet 79: 360-368.

    Article  CAS  Google Scholar 

  • Diwan, N. and P.B. Cregan, 1997. Automated sizing of fluorescentlabelled simplesequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95: 723-733.

    Article  CAS  Google Scholar 

  • Efron, B. and R. Tibshirani, 1986. Bootstrap methods for standard errors, confidence limits and other measures of statistical accuracy. Stat Sci 1: 54-77.

    Google Scholar 

  • Esquinas-Alcazar, J.T., 1977. Alloenzyme variation and relationships in the genus Cucumis. Ph.D. Diss., Univ California, Davis, 170 pp.

    Google Scholar 

  • Garcia E., M. Jamilena, J.I. Alvarez, T. Arnedo, J.L. Oliver and R. Lozano, 1998. Genetic relationships among melon breeding lines revealedby DNA markers and agronomic traits. Theor Appl Genet 96: 878-885.

    Article  CAS  Google Scholar 

  • Gibbons, J.D., 1976. Nonparametric Methods for Quantitative Analysis. Holt, Rinehart and Winston. New York. pp. 463.

    Google Scholar 

  • Hubalek, Z., 1982. Coefficients of association and similarity, based on binary (presence-absence) data: An evaluation. Biol Rev Camb Philos Soc 57: 669-689.

    Google Scholar 

  • Jackson D.A., K.M. Somers and H.H. Harvey, 1989. Similarity coefficients: Measurements of co-occurrence and association or simply measures of occurrence? Am Nat 133: 436-453.

    Article  Google Scholar 

  • Janowitz, M.F., 1980. Similarity measures on binary data. Syst Zool 29: 342-359.

    Article  Google Scholar 

  • Jeffery, C., 1980. A review of the Cucurbitaceae. Bot J Linn Soc 81: 233-247.

    Google Scholar 

  • Katzir N., Y. Danin-Poleg, G. Tzuri, Z. Karchi, U. Lavi and P.B. Cregan, 1996. Length polymorphism and homologies of microsatellites in several Cucurbitacea species. Theor Appl Genet 93: 1282-1290.

    Article  CAS  Google Scholar 

  • Maniatis, T., E.F. Fritsch and J. Sambrook, 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor publisher, Cold Spring Harbor, NY.

    Google Scholar 

  • Mo-Suk, Y., H. Im-Sung, D. Go-Gawn, M. Ann-Chong, H. Kim-Doo, Y. Mo-Suk, and S.H. Im, 1999. RAPD analsysis of genetic diversity of melon species. Korean J Hort Sci Tech 16: 21-24.

    Google Scholar 

  • Munger, H.M. and R.W. Robinson, 1991. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rpt 14: 43-44.

    Google Scholar 

  • Naudin, C.V., 1859. Easais d'une monographie des especes et des varieties du genre Cucumis. Ann. Sci Natl Bot ser 4, 11: 5-87.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 3321-3323.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., 1987. Molecular evolutionary genetics. Colombia University Press, New York.

    Google Scholar 

  • Neuhausen, S.L., 1992. Evaluation of restriction fragment length polymorphisms inCucumis melo. Theor Appl Genet 83: 379-384.

    Article  Google Scholar 

  • Noli, E., S. Salvi and R. Tuberosa, 1997. Comparative analysis of genetic relationshipsin barley based on RFLP and RAPD markers. Genome 40: 607-616.

    CAS  Google Scholar 

  • Pitrat, M., 1994. Linkage groups in Cucumis melo L. Cucurbit Genet Coop Rpt 17: 148-149.

    Google Scholar 

  • Rafalski, J.A. and S.V. Tingey, 1993. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet 9: 275-279.

    Article  PubMed  CAS  Google Scholar 

  • Rolf, F.J., 1997. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Software, New York.

  • Stepansky, A., I. Kovalski, R. Perl-Treves and C.V. Naudin, 1999. Intraspecific classisfication of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plt Syst Evol 217: 313-332.

    Article  CAS  Google Scholar 

  • Shattuck-Eidens, D.M., R.N. Bell, S.L. Neuhausen and T. Hellentjaris, 1990. DNAsequence variation within maize and melon: Observations form polymerase chain reaction amplification and direct sequencing. Genetics 126: 207-217.

    PubMed  CAS  Google Scholar 

  • Sokal, R.R. and P.H. Sneath, 1963. Principles of Numerical Taxonomy. Freeman, San Francisco, Calfornia.

    Google Scholar 

  • Sokal, R.R. and F.J. Rohlf, 1981. Biometry. 2nd ed. W.H. Freeman, New York.

  • Spooner, D.M., J. Tivang, J. Nienhuis, J.T. Miller, D.S. Douches and A. Contreras-M, 1996. Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potato). Theor Appl Genet 92: 532-540.

    Article  CAS  Google Scholar 

  • Staub, J.E. and V. Meglic, 1993. Molecular genetic markers and their legal relevance forcultivar discrimination: A case study in cucumber. HortTechnology 3: 291-300.

    Google Scholar 

  • Staub, J.E., F.C. Serquen and M. Gupta, 1996a. Genetic markers, map construction and their application in plant breeding. HortScience 31: 729-741.

    CAS  Google Scholar 

  • Staub J.E., J. Bacher and K. Poetter, 1996b. Sources of potential errors in theapplication of random amplified polymorphic DNAs in cucumber. HortScience 31: 262-266

    CAS  Google Scholar 

  • Staub, J.E., A. Gabert and T.C. Wehner, 1996c. Plant variety protection: Aconsideration of genetic relationships. HortScience 31: 1086-1091.

    Google Scholar 

  • Staub, J.E., J. Box, V. Meglic, T.F. Horejsi and J.D. McCreight, 1997a. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet Res Crop Evol 44: 257-269.

    Google Scholar 

  • Staub, J.E., F.C. Serquen and J.D. McCreight, 1997b. Genetic diversity in cucumber (Cucumis sativus L.): III. An evaluation of Indian germplasm. Genet Res Crop Evol 44: 315-326.

    Article  Google Scholar 

  • Staub, J.E., 1999. Intellectual property rights, genetic markers and hybrid seed production. J New Seeds 1: 39-64.

    Article  Google Scholar 

  • Steel, R.G.D. and J.H. Torrie, 1980. Principles and Procedures of Statistics: Abiometrical Approach. Second edition. McGraw-Hill, Inc., New York.

    Google Scholar 

  • Tivang, J., J. Nienhuis and O.S. Simth, 1994. Sampling variances of molecular markerdata sets using the bootstrap. Theor Appl Genet 89: 259-264.

    Article  Google Scholar 

  • Waugh, R. and W. Powell, 1992. Using RAPD markers for crop improvement. Trends in Biotech 10: 186-191.

    Article  CAS  Google Scholar 

  • Whitaker, T.W. and D.W. Davis, 1962. Cucurbits: Botany, Cultivation and Utilization. Interscience Pub., New York.

    Google Scholar 

  • Wilkinson, L., 1989. SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, Illinois.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski and S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531-6535.

    PubMed  CAS  Google Scholar 

  • Wu, K.S. and S.D. Tanksley, 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241: 225-235.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, J., L. Li, L. Yaun and S.R. McCouch, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92: 637-643.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staub, J.E., Danin-Poleg, Y., Fazio, G. et al. Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica 115, 225–241 (2000). https://doi.org/10.1023/A:1004054014174

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004054014174

Navigation