Skip to main content
Log in

Vanishing Cycles of Irregular D-Modules

  • Published:
Compositio Mathematica

Abstract

Considering a holonomic \({\mathcal{D}}\)-module and a hypersurface, we define a finite family of \({\mathcal{D}}\)-modules on the hypersurface which we call modules of vanishing cycles. The first one had been previously defined and corresponds to formal solutions. The last one corresponds, via Riemann-Hilbert, to the geometric vanishing cycles of Grothendieck-Deligne. For regular holonomic \({\mathcal{D}}\)-modules there is only one sheaf and for non regular modules the sheaves of vanishing cycles control the growth and the index of solutions. Our results extend to non holonomic modules under some hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki, T.: Invertibility for microdifferential operators of infinite order, Publ. RIMS Kyoto Univ. 18 (1982), 1–29.

    Google Scholar 

  2. Björk, J.E.: Analytic D-Modules and Applications, Kluwer Acad. Publ., Dordrecht, Boston, London, 1993.

    Google Scholar 

  3. Brylinski, J.L., Dubson, A. and Kashiwara, M.: Formule de l'indice pour lesmodules holonomes et obstruction d'Euler locale, CR Acad. Sci. Paris série I 293 (1981), 573–577.

    Google Scholar 

  4. Brylinski, J.L., Malgrange, B. and Verdier, J.L.: Transformation de Fourier géométrique II, CR Acad. Sci. Paris série I 303 (1986), 193–198.

    Google Scholar 

  5. Bouter de Monvel, L.:Opérateurs pseudodiff érentiels d'ordre infini, Ann. Inst. Fourier Grenoble 22 (1972), 229–268.

    Google Scholar 

  6. Ginsburg, V.: Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), 327–402.

    Google Scholar 

  7. Grothendieck, A. and Deligne, P.: SGA 7, Vol. 288, Springer, New York, 1973.

    Google Scholar 

  8. Hartshorne, R.: Residues and Duality, Lecture Notes in Math. 20, Springer, New York, 1966.

    Google Scholar 

  9. Honda, N.: On the reconstruction theorem of holonomic modules in the Gevrey classes, Publ. RIMS Kyoto Univ. 27 (1991), 923–943.

    Google Scholar 

  10. Honda, N.: Regularity theorems for holonomic modules, Proc. Japan Acad. Ser. A 69 (1993), 111–114.

    Google Scholar 

  11. Kashiwara, M.: Systems of Microdifferential Equations, Progr.Math. 34, Birkhäuser, Basel, 1983.

    Google Scholar 

  12. Kashiwara, M.: Vanishing Cycles and Holonomic Systems of Differential Equations, Lecture Notes in Math. 1016, Springer, New York, 1983, pp. 134–142.

    Google Scholar 

  13. Kashiwara, M.: Index theorem for constructible sheaves, Astérisque 130 (1985), 193–209.

    Google Scholar 

  14. Kashiwara, M. and Kawaï, T.: Second microlocalization and asymptotic expansions, In: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Phys. 126, Springer, New York, 1980, pp. 21–76.

    Google Scholar 

  15. Kashiwara, M. and Kawaï, T.: On the holonomic systems of microdifferential equations III. Systems with regular singularities, Publ. RIMS, Kyoto Univ. 17 (1981), 813–979.

    Google Scholar 

  16. Kashiwara, M. and Schapira, P.: Microlocal study of sheaves, Astérisque 128 (1985).

  17. Kashiwara, M. and Schapira, P.: Sheaves on Manifolds, Grundlehren der Math. 292, Springer, Berlin, 1990.

    Google Scholar 

  18. Laurent, Y.: Théorie de la deuxiéme microlocalisation dans le domaine complexe, Progr. Math. 53, Birkhäuser, Basel, 1985.

    Google Scholar 

  19. Laurent, Y.: Polygone de Newton et b-fonctions pour les modules microdifférentiels, Ann. Ecole Norm. Sup. Ser. 4 20 (1987), 391–441.

    Google Scholar 

  20. Laurent, Y.: Microlocal operators with plurisubharmonic growth, Compositio Math. 86 (1993), 23–67.

    Google Scholar 

  21. Laurent, Y.: Vanishing cycles of D-modules, Invent. Math. 112 (1983), 491–539.

    Google Scholar 

  22. Laurent, Y. and Malgrange, B.: Cycles proches, spécialisation et D-modules, Ann. Inst. Fourier Grenoble 45 (1995).

  23. Malgrange, B.: Polynome de Berstein–Sato et cohomologie évanescente, Analyse et topologie sur les espaces singuliers, Astérisque 101–102 (1983).

  24. Malgrange, B.: Equations différentielles á coefficients polynomiaux, Progr.Math. 96, Birkhäuser, Boston, 1991.

  25. Ramis, J.P.: Dévissage Gevrey, Astérisque 59–60 (1978), 173–204.

    Google Scholar 

  26. Ramis, J.P.: Théorémes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984), 296.

    Google Scholar 

  27. Sabbah, C.: D-modules et cyclesévanescents, géométrie réelle, Travaux en Cours 24, Hermann, Paris, 1987, pp. 53–98.

    Google Scholar 

  28. Sabbah, C. and Mebkhout, Z.: D-Nodules et cyclesévanescents, Travaux en Cours 35, Hermann, Paris, 1988.

    Google Scholar 

  29. Sato, M., Kawaï, T. and Kashiwara, M.: Hyperfunctions and Pseudodifferential Equations, Lect. Notes in Math. 287, Springer, New York, 1980, pp. 265–529.

    Google Scholar 

  30. Sato, M., Kawaï, T. and Kashiwara, M.: Microlocal analysis of theta functions, Adv. Stud. Pure Math. 4 (1984), 267–289.

    Google Scholar 

  31. Schapira, P.: Microdifferential Systems in the Complex Domain, Grundlehren der Math. 269, Springer, Berlin, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, Y. Vanishing Cycles of Irregular D-Modules. Compositio Mathematica 116, 241–310 (1999). https://doi.org/10.1023/A:1000791329695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000791329695

Navigation