Skip to main content
Log in

Intramolecular Fluorescence Quenching of Crowned 7-Aminocoumarins as Potential Fluorescent Chemosensors

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The effects of the nature of solvent, temperature and complex formation with alkali and alkaline-earth metal cations, as well as protonation, on the efficiency and the kinetics of fluorescence of 3-azacrowned 7-diethylaminocoumarins have been studied. For the crown-ethers under investigation, the ratio of a dipole moment to the radius of Onsager cavity Δ μ/ρ is a constant value, and a macrocycle does not affect Δμ and ρ. The fluorescence of coumarin 1 in acetonitrile is quenched by an electron donor, triethylamine, with the Stern-Volmer constant being equal to (0.474 ± 0.009) M−1. The decrease in coumarin 1 fluorescence quantum yield upon the introduction of N-alkylazacrown moiety into position 3 is caused by an intramolecular photoinduced electron transfer from the nitrogen atom of macroheterocycle to the coumarin moiety, where the excitation is localized. The fluorescence quenching has an activation energy 2.32 ± 0.05 kcal/mol in various hydrocarbons, and does not depend on the solvent viscosity. The fluorescence kinetics of free crowned coumarins in methanol is not monoexponential because of the existence of macrocycle conformers, or because of the hydrogen bond complex formation between the solvent and the nitrogen atom of macrocycle, in which the efficiency of intramolecular electron transfer is different. Upon complex formation with alkali and alkaline-earth metal cations and upon protonation, the fluorescence quantum yield increases and fluorescence decay becomes monoexponential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Vögtle and E. Weber (Ed.) (1985). Host Guest Complex Chemistry Macrocycles: Synthesis, Structures, Applications, Springer-Verlag, Berlin.

    Google Scholar 

  2. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97(5), 1515-1566.

    Google Scholar 

  3. H.-G. Löhr and F. Vögtle (1985). Chromo-and fluoroionophores. A new class of dye reagents. Acc. Chem. Res. 18, 65-72.

    Google Scholar 

  4. A. P. de Silva and S. A. de Silva (1986). Fluorescent signalling crown ethers. ‘Switching On’ of fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc., Chem. Commun. 1709-1710.

  5. J. Bourson, J. Pouget, and B. Valeur (1993). Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers. J. Phys. Chem. 97(17), 4552-4557.

    Google Scholar 

  6. J. Bourson, M.-N. Borrel, and B. Valeur (1992). Ion-responsive fluorescent compounds. Part 3. Cation complexation with coumarin 153 linked to monoaza-15-crown-5. Anal. Chim. Acta 257, 189-193.

    Google Scholar 

  7. J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  8. W. H. Melhuish (1961). Quantum efficiencies of fluorescence of organic substances—effect of solvent and concentration of fluorescent solute. J. Phys. Chem. 65(2), 229-235.

    Google Scholar 

  9. V. L. Lapteva, M. V. Rusalov, V. V. Samoshin, M. A. Kirpichenok, S. I. Druzhinin, B. M. Uzhinov, and N. S. Zefirov (1995). New coumarin-containing fluoroionophores. Doklady Chem. 344(1–3), 202-204.

    Google Scholar 

  10. A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E. Toops (1955). Organic Solvents. Physical Properties and Methods of Purification. Interscience Publishers, New York.

    Google Scholar 

  11. N. A. Nemkovich, H. Reis, and W. Baumann (1997). Ground and excited state dipole moments of coumarin laser dyes: Investigation by electro-optical absorption and emission methods. J. Lumin. 71, 255-263.

    Google Scholar 

  12. E. Lippert (1955). Dipolmoment und Elektronenstruktur von Angeregten Molekülen, Z. Naturforsch. A 10(7), 541-545.

    Google Scholar 

  13. W. Rettig and A. Klock (1985). Intramolecular fluorescence quenching in aminocoumarines—identification of an excited-state with full charge separation. Can. J. Chem. 63(7), 1649-1653.

    Google Scholar 

  14. S. I. Druzhinin, B. D. Bursulaya, and B. M. Uzhinov (1991). Charged substituents and the effect of their electric-field on the electronic-spectra of some aminocoumarins. Chem. Phys. 158(1), 137-142.

    Google Scholar 

  15. A. F. Clifford et al. (Eds.) (1964). International Encyclopedia of Chemical Science, D. Van Nostrand Company, Toronto.

    Google Scholar 

  16. J.-L. Habib-Jiwan, C. Branger, J.-Ph. Soumillion, and B. Valeur (1998). Ion-responsive fluorescent compounds V. Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5. J. Photochem. Photobiol. A: Chem. 116, 127-133.

    Google Scholar 

  17. G. Jones II, W. R. Jackson, and A. M. Halpern (1980). Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chem. Phys. Lett. 72(2), 391-395.

    Google Scholar 

  18. Chao-Tsen Chen and Wan-Pei Huang (2002). A highly selective fluorescent chemosensor for lead ions. J. Am. Chem. Soc. 124, 6246-6247.

    Google Scholar 

  19. G. Jones II, S. F. Griffin, Ch. Choi, and W. R. Bergmark (1984). Electron donor–acceptor quenching and photoinduced electron transfer for coumarin dyes. J. Org. Chem. 49, 2705-2708.

    Google Scholar 

  20. S. Nad and H. Pal (2000). Electron transfer from aromatic amines to excited coumarin dyes: Fluorescence quenching and picosecond transient absorption studies. J. Phys. Chem. A 104(3), 673-680.

    Google Scholar 

  21. S. Nad and H. Pal (2000). Electron transfer from diphenyl and triphenyl amines to excited coumarin dyes. J. Photochem. Photobiolog. A: Chem. 134, 9-15.

    Google Scholar 

  22. R. A. Beecroft, R. S. Davidson, D. Goodwin, J. E. Pratt, and X. J. Luo (1986). Quenching of the triplet states of aromatic hydrocarbons by tertiary amines. J. Chem. Soc., Faraday Trans. 2 82, 2393-2397.

    Google Scholar 

  23. C. A. Parker (1968). Photoluminescence of Solutions, Elsevier, Amsterdam.

    Google Scholar 

  24. D. F. Othmer and M. S. Thakar (1953). Correlating diffusion coefficients in liquids. Ind. Eng. Chem. 45(3), 589-593.

    Google Scholar 

  25. A. Demeter, S. Druzhinin, M. George, E. Haselbach, J.-L. Roulin, and K. A. Zachariasse (2000). Dual fluorescence and fast intramolecular charge transfer with 4-(diisopropylamino) benzonitrile in alkane solvents. Chem. Phys. Lett. 323(3–4), 351-360.

    Google Scholar 

  26. S. I. Druzhinin and B. M. Uzhinov (1982). Proton transfer and nonradiative deactivation in excited ion pairs of N,N-dimethyl-1-naphthylamine with carboxylic acids. Theor. Exp. Chem. 18(5), 515-522.

    Google Scholar 

  27. R. C. Reid, J. M. Prausnitz, and Th. K. Sherwood (1977). The Properties of Gases and Liquids, McGraw-Hill, New York.

    Google Scholar 

  28. S. I. Druzhinin, Y.-B. Jiang, A. Demeter, and K. A. Zachariasse (2001). Internal conversion with 4-(azetidinyl)benzonitriles in alkane solvents. Influence of fluoro substitution. Phys. Chem. Chem. Phys. 3(23), 5213-5221.

    Google Scholar 

  29. S. I. Druzhinin, A. Demeter, V. A. Galievsky, T. Yoshihara, and K. A. Zachariasse (2003). Thermally activated internal conversion with 4-(dimethylamino)benzonitrile, 4-(methylamino) benzonitrile, and 4-aminobenzonitrile in alkane solvents. No correlation with intramolecular charge transfer. J. Phys. Chem. A 107(40), 8075-8085.

    Google Scholar 

  30. I. Rückert, A. Demeter, O. Morawski, W. Kuhnle, E. Tauer, and K. A. Zachariasse (1999). Internal conversion in 1-aminonaphthalenes. Influence of amino twist angle. J. Phys. Chem. A 103(13), 1958-1966.

    Google Scholar 

  31. D. Rehm and A. Weller (1970). Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8(2), 259-272.

    Google Scholar 

  32. C. A. M. Seidel, A. Schulz, and M. H. M. Sauer (1996). Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100(13), 5541-5553.

    Google Scholar 

  33. K. I. Priyadarsini and J. P. Mittal (1991). Effect of 1,4-diazabicyclo-[2,2,2]-octane on the laser properties of 7-amino coumarin dyes. J. Photochem. Photobiolog. A: Chem. 61(3), 381-388.

    Google Scholar 

  34. S. S. Jayanthi and P. Ramamurthy (1998). Excited singlet state reaction of phenosafranine with electron donors. Role of the heavy-atom effect in triplet induction. J. Chem. Soc., Faraday Trans. 94(12), 1675-1679.

    Google Scholar 

  35. Yu. Nagasawa, A. P. Yartsev, K. Tominaga, A. E. Johnson, and K. Yoshihara (1993). Substituent effects on intermolecular electron transfer: Coumarins in electron-donating solvents. J. Am. Chem. Soc. 115(17), 7922-7923.

    Google Scholar 

  36. Ch. Wang, B. Akhremitchev, and G. C. Walker (1997). Femtosecond infrared and visible spectroscopy of photoinduced intermolecular electron transfer dynamics and solvent-solute reaction geometries: Coumarin 337 in dimethylaniline. J. Phys. Chem. A 101(15), 2735-2738.

    Google Scholar 

  37. H. Shirota, H. Pal, K. Tominaga, and K. Yoshihara (1998). Ultrafast intermolecular electron transfer in coumarin-hydrazine system. Chem. Phys. 236, 355-364.

    Google Scholar 

  38. T. Okada, T. Fujita, M. Kubota, S. Masaki, N. Mataga, R. Ide, Y. Sakata, and S. Misumi (1972). Intramolecular electron donor–acceptor interactions in the excited state of (anthracene)–(CH2) n–(N,N-dimethylaniline) systems. Chem. Phys. Lett. 14(5), 563-568.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Rusalov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusalov, M.V., Druzhinin, S.I. & Uzhinov, B.M. Intramolecular Fluorescence Quenching of Crowned 7-Aminocoumarins as Potential Fluorescent Chemosensors. Journal of Fluorescence 14, 193–202 (2004). https://doi.org/10.1023/B:JOFL.0000016291.26652.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000016291.26652.3b

Navigation