Skip to main content
Log in

Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The anadromous Chinese sturgeon (Acipenser sinensis), mainly endemic to the Yangtze River in China, is an endangered fish species. The natural population has declined since the Gezhouba Dam blocked its migratory route to the spawning grounds in 1981. In the near future, the completion of the Three Gorges Dam, the world's largest hydroelectric project, may further impact this species by altering the water flow of the Yangtze River. Little is currently known about the population genetic structure of the Chinese sturgeon. In this study, DNA sequence data were determined from the control region (D-loop) of the mitochondrial genome of adult sturgeons (n = 106) that were collected between 1995–2000. The molecular data were used to investigate genetic variation, effective female population size and population history of the Chinese sturgeon in the Yangtze River. Our results indicate that the reduction in abundance did not change genetic variation of the Chinese sturgeon, and that the population underwent an expansion in the past. AMOVA analysis indicated that 98.7% of the genetic variability occurred within each year's spawning populations, the year of collection had little influence on the diversity of annual temporary samples. The relative large effective female population size (N ef) indicates that good potential exists for the recovery of this species in the future. Strikingly, the ratio of N ef to the census female population size (N f) is unusually high (0.77–0.93). This may be the result of a current bottleneck in the population of the Chinese sturgeon that is likely caused by human intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1988) The Biology of Sturgeons in Changjiang (Yangtze) and Their Artificial Propagation. Sichuan Scientific and Technical Publishing House, Chengdu, China.

    Google Scholar 

  • Aris-Brosou S, Excoffier L (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol., 13, 494–504.

    PubMed  CAS  Google Scholar 

  • Birstein VJ, Bemis WE, Waldman JR (1997) The threatened status of acipenseriform species: a summary. Environ. Biol. Fish., 48, 427–435.

    Article  Google Scholar 

  • Brown JR, Beckenback AT, Smith MJ (1993) Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol., 10, 326–341.

    PubMed  CAS  Google Scholar 

  • Campton DE, Bass AL, Chapman FA, Bowen BW (2000) Genetic distinction of pallid, shovelnose, and Alabama sturgeon: emerging species and the US Endangered Species Act. Cons. Genet., 1, 17–32.

    Article  CAS  Google Scholar 

  • Chang J, Cao W (1999) History and prospective of conservation on the Chinese sturgeon in the Yangtze River. Acta Hydrobiol. Sin., 23, 712–720.

    Google Scholar 

  • Chang J, Cao W (2001) Population dynamics of Chinese sturgeon, Acipenser sinensis Gray: spawning stocks in the reach below the Gezhouba Dam. Abstract of the Fourth International Symposium on Sturgeon. Wisconsin, USA, July 8-13.

  • Doukakis P, Birstein VJ, Ruban GI, Desalle R (1999) Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A. stellatus. Mol. Ecol., 8, S117–S127.

    Article  PubMed  CAS  Google Scholar 

  • Dowling TE, de Marais BD (1993) Evolutionary significance of introgressive hybridization in cyprinid fishes. Nature, 362, 444–446.

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    PubMed  CAS  Google Scholar 

  • Frankham R (1995) Conservation genetics. Ann. Rev. Genet., 29, 305–327.

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Hu D, Chen S (1985) Artificial propagation of the Chinese sturgeon below the Gezhouba Dam. Freshwat. Fish., 1, 1–5.

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    PubMed  CAS  Google Scholar 

  • Jenneckens I, Meyer J-N, Debus L, Pitra C, Ludwig A (2000) Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecol. Lett., 3, 503–508.

    Article  Google Scholar 

  • Ke F, Wei Q, Zhang G, Hu D, Luo J, Zhuang P (1992) The structure and size of the spawning population of the Chinese sturgeon, Acipenser sinensis. Freshwat. Fish., 4, 7–11.

    Google Scholar 

  • King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Cons. Genet., 2, 103–119.

    Article  CAS  Google Scholar 

  • Kynard B, We Q, Ke F (1995) Use of ultrasonic telemetry to locate the spawning area of the Chinese sturgeon. Chin. Sci. Bull., 40, 668–671.

    Google Scholar 

  • Li S (1987) Geographic distribution of the order Acipenseriformes in China. Chin. J. Zool., 22, 35–40.

    Google Scholar 

  • Moritz C (1995) Uses of molecular phylogenies for conservation. Phil. Trans. R. Soc. Lond. B, 349, 113–118.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press. Oxford, New York.

    Google Scholar 

  • Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Cons. Biol., 8, 175–185.

    Article  Google Scholar 

  • Pan J, Liu C (1986) Morphological comparison between the Chinese sturgeons collected from the Yangtze and the Pearl Rivers. J. Huanan Normal Univ., 2, 35–39.

    Google Scholar 

  • Pourkazemi M, Skibinski DOF, Beardmore JA (1999) Application of mtDNA d-loop region for the study of Russian sturgeon population structure from Iranian coastline of the Caspian Sea. J. Appl. Ichthyol., 15, 23–28.

    CAS  Google Scholar 

  • Quattro JM, Greig TW, Coykendall DK, Bowen BW, Baldwin JD (2002) Genetic issues in aquatic species mangement: the shortnose sturgeon (Acipenser brevirostrum) in the southerneastern United states. Cons. Genet., 3, 155–166.

    Article  CAS  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol., 9, 552–569.

    PubMed  CAS  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a pleistocene population explosion. Evolution, 49, 608–615.

    Article  Google Scholar 

  • Rooney AP, Honeycutt RL, Derr JN (2001) Historical population size change of bowhead whales inferred from DNA sequence polymorphism data. Evolution, 55, 1678–1685.

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics, 15, 174–175.

    Article  PubMed  CAS  Google Scholar 

  • Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population-size. Cons. Biol., 5, 325–329.

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN, version 2.000: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562.

    PubMed  CAS  Google Scholar 

  • Stabile J, Waldman JR, Parauka F, Wirgin I (1996) Stock structure and homing fidelity in Gulf of Mexico sturgeon (Acipenser oxyrinchus desotoi) based on restriction fragment length polymorphism and sequence analyses of mitochondrial DNA. Genetics, 144, 767–775.

    PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10, 512–526.

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    PubMed  CAS  Google Scholar 

  • Tajima F (1993) Measurement of DNA polymorphism. In: Mechanisms of Molecular Evolution (eds. Takahata N, Clark AG), pp. 37–59. Sinauer Associates. Inc., Sunderland, MA.

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Turner TF, Richardson LR, Gold JR (1999) Temporal genetic variation of mitochondrial DNA and the female effective population size of red drum (Sciaenops ocellatus) in the northern Gulf of Mexico. Mol. Ecol., 8, 1223–1229.

    Article  Google Scholar 

  • Verspoor E, Hammar J (1991) Introgressive hybridization in fishes: the biochemical evidence. J. Fish. Biol., 39(Suppl.), 309–334.

    Article  Google Scholar 

  • Waldman JR, Hart JT, Wirgin II (1996) Stock composition of the New York Bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. Trans. Am. Fish. Soc., 125, 364–371.

    Article  CAS  Google Scholar 

  • Walsh MG, Bain MB, Squiers TJr, Waldman JR, Wirgin I (2001) Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries, 24, 41–48.

    Google Scholar 

  • Waples RS, Do C (1994) Genetic risk associated with supplementation of pacific salmonids — captive broodstock programs. Can. J. Fish. Aquat. Sci., 51(Suppl.), 310–329.

    Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol., 7, 256–276.

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Ke F, Zhang J, Zhuang P, Lu JD, Zhou RQ, Yang WH (1997) Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environ. Biol. Fish., 48, 241–255.

    Article  Google Scholar 

  • Wirgin I, Waldman JR, Rosko J, Gross R, Collins MR, Rogers SG, Stabile J (2000) Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Trans. Am. Fish. Soc., 129, 476–486.

    Article  CAS  Google Scholar 

  • Wright S (1978) Evolution and the Genetics of Populations. Vol. 4, Variability Within and Among Natural Populations. University of Chicago Press. Chicago.

    Google Scholar 

  • Wu J, Huang J, Han X, Xie Z, Gao X (2003) Three-Gorges Dam — experiment in habitat fragmentation? Science, 300, 1239–1240.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Chang J, Liu Y (1999) Evaluation of status of artificial propagation and releasing of the Chinese sturgeon in the Yangtze River. Acta Hydrobiol. Sin., 23, 572–576.

    Google Scholar 

  • Yi J, Chang J, Tang D, Liu D, Ge B (1999) Present status of spawning stock of the Chinese sturgeon, Acipenser sinensis, in the Yangtze River. Acta Hydrobiol. Sin., 23, 554–559.

    Google Scholar 

  • Zhang S-M, Yang Y, Deng H, Wei Q-W, Wu Q-J (1999a) The preliminary evidence for low genetic diversity in the Chinese sturgeon (Acipenser sinensis) revealed by protein electrophoresis. Zool. Res., 20, 93–98.

    Google Scholar 

  • Zhang S-M, Deng H, Wang D, Zhang Y-P, Wu Q-J (1999b) Mitochondrial DNA length variation and heteroplasmy in the Chinese sturgeon (Acipenser sinensis). Acta Genet. Sin., 26, 18–25.

    CAS  Google Scholar 

  • Zhang S-M, Deng H, Yang Y, Wu Q-J (2000a) Population genetic structure and genetic diversity of the Chinese sturgeon (Acipenser sinensis) based on random amplified polymorphic DNA analysis. Oceanol. Limnol. Sin., 31, 1–7.

    CAS  Google Scholar 

  • Zhang S-M, Zhang Y-P, Zheng X-Z, Chen Y-J, Deng H, Wang D-J, Wei Q-W, Zhang Y-W, Nie L, Wu Q-J (2000b) Molecular phylogenetic systematics of twelve species of Acipenseriformes based on mtDNA ND4L-ND4 gene sequence analysis. Sci. China (Ser. C), 43, 129–137.

    Article  CAS  Google Scholar 

  • Zhang S-M, Wu Q-J, Zhang Y-P (2001) On the taxonomic status of the Yangtze sturgeon, Asian and American green sturgeons inferred from mitochondrial control region sequences. Acta Zool. Sin., 47, 632–639.

    CAS  Google Scholar 

  • Zhu B, Zhou F, Cao H, Shao Z, Zhao N, May B, Chang J (2002) Analysis of genetic variation in the Chinese sturgeon, Acipenser sinensis: estimating the contribution of artificial produced larvae in a wild population. J. Appl. Ichthyol., 18, 301–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SM., Wang, DQ. & Zhang, YP. Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis . Conservation Genetics 4, 673–683 (2003). https://doi.org/10.1023/B:COGE.0000006107.46111.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000006107.46111.bc

Navigation