Skip to main content
Log in

In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The application of in situ Raman, IR, and UV-Vis DRS spectroscopies during steady-state methanol oxidation has demonstrated that the molecular structures of surface vanadium oxide species supported on metal oxides are very sensitive to the coordination and H-bonding effects of adsorbed methoxy surface species. Specifically, a decrease in the intensity of spectral bands associated with the fully oxidized surface (V5+) vanadia active phase occurred in all three studied spectroscopies during methanol oxidation. The terminal V = O (∼1030 cm−1) and bridging V–O–V (∼900–940 cm−1) vibrational bands also shifted toward lower frequency, while the in situ UV-Vis DRS spectra exhibited shifts in the surface V5+ LMCT band (>25,000 cm−1) to higher edge energies. The magnitude of these distortions correlates with the concentration of adsorbed methoxy intermediates and is most severe at lower temperatures and higher methanol partial pressures, where the surface methoxy concentrations are greatest. Conversely, spectral changes caused by actual reductions in surface vanadia (V5+) species to reduced phases (V3+/V4+) would have been more severe at higher temperatures. Moreover, the catalyst (vanadia/silica) exhibiting the greatest shift in UV-Vis DRS edge energy did not exhibit any bands from reduced V3+/V4+ phases in the d–d transition region (10,000–30,000 cm−1), even though d–d transitions were detected in vanadia/alumina and vanadia/zirconia catalysts. Therefore, V5+ spectral signals are generally not representative of the percent vanadia reduction during the methanol oxidation redox cycle, although estimates made from the high temperature, low methoxy surface coverage IR spectra suggest that the catalyst surfaces remain mostly oxidized during steady-state methanol oxidation (15–25% vanadia reduction). Finally, adsorbed surface methoxy intermediate species were easily detected with in situ IR spectroscopy during methanol oxidation in the C–H stretching region (2800–3000 cm−1) for all studied catalysts, the vibrations occurring at different frequencies depending on the specific metal oxide upon which they chemisorb. However, methoxy bands were only found in a few cases using in situ Raman spectroscopy due to the sensitivity of the Raman scattering cross-sections to the specific substrate onto which the surface methoxy species are adsorbed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.E. Wachs, Catal. Today 27 (1996) 437.

    Article  CAS  Google Scholar 

  2. J.M. Tatibouët, Appl. Catal. A 148 (1997) 213.

    Article  Google Scholar 

  3. I.E. Wachs, G. Deo, M.A. Vuurman, H. Hu, D.S. Kim and J.M. Jehng, J. Mol. Catal. 82 (1993) 443.

    Article  CAS  Google Scholar 

  4. P. Forzatti, E. Tronconi, A.S. Elmi and G. Busca, Appl. Catal. A 157 (1997) 387.

    Article  CAS  Google Scholar 

  5. (a) J.-M. Jehng and I.E. Wachs, J. Phys. Chem. 95 (1991) 7373; (b) M.A. Vuurman and I.E. Wachs, J. Phys. Chem. 96 (1992) 5008.

    Article  CAS  Google Scholar 

  6. (a) D.S. Kim and I.E. Wachs, J. Catal. 142 (1993) 166; (b) D.S. Kim and I.E. Wachs, J. Catal. 141 (1993) 419.

    Article  CAS  Google Scholar 

  7. Y. Matsuoka, M. Niwa and Y. Murakami, J. Phys. Chem. 94 (1990) 1477.

    Article  CAS  Google Scholar 

  8. (a) H. Hu and I.E. Wachs, J. Phys. Chem. 99 (1995) 10911. (b) D.S. Kim, I.E. Wachs and K. Segawa, J. Catal. 146 (1994) 268.

    Article  CAS  Google Scholar 

  9. X. Gao and Q. Xin, J. Catal. 146 (1994) 306.

    Article  CAS  Google Scholar 

  10. Z. Sojka and M. Che, J. Phys. Chem. 99 (1995) 5418.

    Article  CAS  Google Scholar 

  11. (a) B.M. Weckhuysen and I.E. Wachs, J. Phys. Chem. B 101 (1997) 2793; (b) B.M. Weckhuysen and I.E. Wachs, J. Phys. Chem. 100 (1996) 14437.

    Article  CAS  Google Scholar 

  12. (a) I.E. Wachs and B.M. Weckhuysen, Appl. Catal. A 157 (1997) 67; (b)L.J. Burcham and I.E. Wachs, Catal. Today 49 (1999) 467.

    Article  CAS  Google Scholar 

  13. J.-M. Jehng, G. Deo, B.M. Weckhuysen and I.E. Wachs, J. Mol. Catal. A 110 (1996) 41.

    Article  CAS  Google Scholar 

  14. M.C. Paganini, L. Dall’Acqua, E. Giamello, L. Lietti, P. Forzatti and G. Busca, J. Catal. 166 (1997) 195.

    Article  CAS  Google Scholar 

  15. (a) N.-Y. Topsøe, H. Topsøe and J.A. Dumesic, J. Catal. 151 (1995) 226; (b) N.-Y.Topsøe, J.A. Dumesic and H. Topsøe, J. Catal. 151 (1995) 241; (c) N.-Y. Topsøe, J. Catal. 128 (1991) 499.

    Article  Google Scholar 

  16. S. Pak, C.E. Smith, M.P. Rosynek and J.H. Lunsford, J. Catal. 165 (1997) 73.

    Article  CAS  Google Scholar 

  17. (a) G.T. Went, S.T. Oyama and A.T. Bell, J. Phys. Chem. 94 (1990) 4240; (b) A. Khodakov, B. Olthof, A.T. Bell and E. Iglesia, J. Catal. 181 (1999) 205; (c) A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal. 177 (1998) 343; (d) G.T. Went, L.J. Leu, R.R. Rosin and A.T. Bell, J. Catal. 134 (1992) 492.

    Article  CAS  Google Scholar 

  18. K. Inumaru, M. Misono and T. Okuhara, Appl. Catal. A 149 (1997) 133.

    Article  CAS  Google Scholar 

  19. (a) F. Hatayama, T. Ohno, T. Maruoka, T. Ono and H. Miyata, J. Chem. Soc., Faraday Trans. 87 (1991) 2629; (b) H. Miyata, M. Kohno, T. Ono, T. Ohno and F. Hatayama, J. Mol. Catal. 63 (1990) 181.

    Article  CAS  Google Scholar 

  20. (a) I.E. Wachs, G. Deo, M.V. Juskelis and B.M. Weckhuysen, in: Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis, eds. G.F. Froment and K.C. Waugh (Elsevier, Amsterdam, 1997) pp. 305–314; (b) I.E. achs, in: Catalysis, Vol. 13, ed. J.J. Spivey (The Royal Society of Chemistry, Cambridge, 1997) pp. 37–54.

    Google Scholar 

  21. (a) G. Deo, I.E. Wachs and J. Haber, Crit. Rev. Surf. Chem. 4 (1994) 141; (b) G. Deo and I.E. Wachs, J. Catal. 146 (1994) 323; (c) G. Deo and I.E. Wachs, ACS Symp. Ser. 523 (1993) 31; (d) G. Deo and I.E. Wachs, J. Catal. 129 (1991) 307.

    CAS  Google Scholar 

  22. (a) S.C. Su and A.T. Bell, J. Phys. Chem. B 102 (1998) 7000; (b) G.T. Went, L.J. Leu and A.T. Bell, J. Catal. 134 (1992) 479; (c) G.T. Went, L.J. Leu, S.J. Lombardo and A.T. Bell, J. Phys. Chem. 96 (1992) 2235; (d) S.T. Oyama, G.T. Went, K.B. Lewis, A.T. Bell and G.A. Somorjai, J. Phys. Chem. 93 (1989) 6786.

    Article  CAS  Google Scholar 

  23. F. Arena, F. Frusteri and A. Parmaliana, Appl. Catal. A 176 (1999) 189.

    Article  CAS  Google Scholar 

  24. N. Nag, K. Chary and V. Subrahmanyam, J. Chem. Soc., Chem. Commun. (1986) 1147.

  25. (a) U. Scharf, M. Schneider, A. Baiker and A. Wokaun, J. Catal. 149 (1994) 344; (b) B.E. Handy, A. Baiker, M. Schraml-Marth and A. Wokaun, J. Catal. 133 (1992) 1; (c) U. Scharf, M. Schraml-Marth, A. Wokaun and A. Baiker, J. Chem. Soc., Faraday Trans. 87 (1991) 3299; (d) J. Kijenski, A. Baiker, M. Glinski, P. Dollenmeier and A. Wokaun, J. Catal. 101 (1986) 1.

    Article  CAS  Google Scholar 

  26. F. Roozeboom, P.D. Cordingley and P.J. Gellings, J. Catal. 68 (1981) 464.

    Article  CAS  Google Scholar 

  27. (a) C. Cristiani, P. Forzatti and G. Busca, J. Catal. 116 (1989) 586; (b) I.E. Wachs, J. Catal. 124 (1990) 570; (c) G. Ramis, C. Cristiani, P. Forzatti and G. Busca, J. Catal. 124 (1990) 574.

    Article  CAS  Google Scholar 

  28. F.D. Hardcastle and I.E. Wachs, J. Phys. Chem. 95 (1991) 5031.

    Article  CAS  Google Scholar 

  29. (a) L. Owens and H.H. Kung, J. Catal. 148 (1994) 587; (b) L. Owens and H.H. Kung, J. Catal. 144 (1993) 202; (c) P.J. Andersen and H.H. Kung, J. Phys. Chem. 96 (1992) 3114.

    Article  CAS  Google Scholar 

  30. X. Gao, S.R. Bare, B.M Weckhuysen and I.E. Wachs, J. Phys. Chem. B 102 (1998) 10842.

    Article  CAS  Google Scholar 

  31. J.-M. Jehng, H. Hu, X. Gao and I.E. Wachs, Catal. Today 28 (1996) 335.

    Article  CAS  Google Scholar 

  32. G. Busca, A.S. Elmi and P. Forzatti, J. Phys. Chem. 91 (1987) 5263.

    Article  CAS  Google Scholar 

  33. W.L. Holstein and C.J. Machiels, J. Catal. 162 (1996) 118.

    Article  CAS  Google Scholar 

  34. (a) M.M. Ostromecki, L.J. Burcham, I.E. Wachs, N. Ramani and J. Ekerdt, J. Mol. Catal. A 132 (1998) 59; (b) M.M. Ostromecki, L.J. Burcham and I.E. Wachs, J. Mol. Catal. A 132 (1998) 43.

    Article  CAS  Google Scholar 

  35. L.J. Burcham, Ph.D. dissertation, Lehigh University, Bethlehem, PA (1999).

  36. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1968).

    Google Scholar 

  37. B.M. Weckhuysen and R.A. Schoonheydt, Catal. Today 49 (1999) 441.

    Article  CAS  Google Scholar 

  38. G. Busca, Catal. Today 27 (1996) 457.

    Article  CAS  Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed. (Wiley, New York, 1986).

    Google Scholar 

  40. J.H. Noggle, Physical Chemistry, 2nd Ed. (Harper Collins, New York, 1989).

    Google Scholar 

  41. X. Gao and I.E. Wachs, unpublished results.

  42. (a) E. Ahlborn, E. Diemann and A. Müller, Z. Anorg. Allg. Chem. 394 (1972) 1; (b) D.N. Sathyanarayana and C.C. Patel, Bull. Chem. Soc. Jpn. 37 (1964) 1736; (c) B. Soptrajanov, A. Nikolovskii and I. Petrov, Spectrochim. Acta Part A 24A (1968) 1617.

    Article  CAS  Google Scholar 

  43. G. Busca, E. Finocchio, V. Lorenzelli, G. Ramis and M. Baldi, Catal. Today 49 (1999) 453.

    Article  CAS  Google Scholar 

  44. (a) M. Ruitenbeek, R.A. Overbeek, A.J. van Dillen, D.C. Koningsberger and J.W. Geus, Recl. Trav. Chim. Pays-Bas 115 (1996) 519; (b) M. Ruitenbeek, Ph.D. Dissertation, Utrecht University, Utrecht (1999).

    CAS  Google Scholar 

  45. A.T. Bell, in: Vibrational Spectroscopy of Molecules on Surfaces, eds. J.T. Yates and T.E. Madey (Plenum, New York, 1987) pp. 105–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burcham, L.J., Deo, G., Gao, X. et al. In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation. Topics in Catalysis 11, 85–100 (2000). https://doi.org/10.1023/A:1027275225668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027275225668

Navigation