Skip to main content
Log in

Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archimède H., Dulormne M., Tournebize R., Saminadin G., Periacarpin F. and Xand' A.2001. The effects of Gliricidia sepium supplementation on intake and digestion of Digitaria decumbens hay by black belly sheep.J. Agric. Sci.137: 105–112.

    Article  Google Scholar 

  • Arnebrandt K., Ek H., Finlay R.D. and Söderström B.1993. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium.New Phytol.130: 231–242.

    Article  Google Scholar 

  • Brophy L.S., Heichel G.H. and Russelle M.P.1987. Nitrogen transfer from forage legumes to grass in a systematic planting design.Crop. Sci.27: 753–758.

    Article  Google Scholar 

  • Catchpoole D.W. and Blair G.J.1990. Forage tree legumes III. Release of nitrogen from leaf, faeces and urine derived from leucaena and gliricidia leaf.Aust. J. Agric. Res.41: 539–547.

    Article  CAS  Google Scholar 

  • Domenach A.M., Kurdali F. and Bardin R.1989. Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance.Plant Soil.118: 51–59.

    Article  CAS  Google Scholar 

  • Dulormne M.2001. Analyse de l'effet ombrage dans un système agroforestier l'gumineuse arbustive-herbe. Ph. D. thesis, University Paris Sud, France, 120 pp.

    Google Scholar 

  • García H., Nygren P. and Desfontaines L.2001. Dynamics of non-structural carbohydrates and biomass yield in a fodder legume tree under different harvest intensities.Tree Physiol.21: 523–531.

    PubMed  Google Scholar 

  • Kanninen M.2001. Secuestro de carbono en bosques: el papel de los bosques en el ciclo global de carbono. In: II Conferencia Electrónica FAO-CIPAV sobre Agroforestería para la Producción Animal en Latinoam'rica.http://www.lead-es.virtualcentre.org.

  • Kass D.C.L., Sylvester-Bradley R. and Nygren P.1997. The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas.Soil. Biol. Biochem.29: 775–785.

    Article  CAS  Google Scholar 

  • Ladha J.K., Peoples M.B., Garrity D.P., Capuno V.T. and Dart P.J.1993. Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method.Soil Sci. Soc. Am. J.57: 732–737.

    Article  CAS  Google Scholar 

  • Liyanage M. de S., Danso S.K.A. and Jayasundara H.P.S.1994. Biological nitrogen fixation in four Gliricidia sepium genotypes.Plant Soil.161: 267–274.

    Article  Google Scholar 

  • Nygren P. and Cruz P.1998. Biomass allocation and nodulation of Gliricidia sepium under two cut-and-carry forage production regimes.Agrofor. Syst.41: 277–292.

    Article  Google Scholar 

  • Nygren P., Cruz P., Domenach A.M., Vaillant V. and Sierra J.2000a. Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume.Tree Physiol.20: 41–48.

    PubMed  Google Scholar 

  • Nygren P., Lorenzo A. and Cruz P.2000b. Decomposition of woody legume nodules in two tree/grass associations under contrasting environmental conditions.Agrofor. Syst.48: 229–244.

    Article  Google Scholar 

  • Peoples M.B., Palmer B., Lilley D.M., Duc L.M. and Herridge D.F.1996. Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage.Plant Soil.182: 125–137.

    Article  CAS  Google Scholar 

  • Postgate J.1987. Nitrogen fixation, 2nd ed.Edward Arnold, London, UK, 73 pp.

    Google Scholar 

  • Rao A.V. and Giller K.E.1993. Nitrogen fixation and its transfer from Leucaena to grass using 15N. For.Ecol. Manage.61: 221–227.

    Article  Google Scholar 

  • Ruhigwa B.A., Gichuru M.P., Mambani B. and Tariah N.M.1992. Root distribution of Acioa barteri, Alchornea cordifolia, Cassia siamea and Gmelina arborea in an acid Ultisol.Agrofor. Syst.19: 67–78.

    Article  Google Scholar 

  • Russelle M.P., Allan D.L. and Gourly C.J.P.1994. Direct assessment of symbiotically fixed nitrogen in the rhizosphere of alfalfa.Plant Soil159: 223–243.

    Article  Google Scholar 

  • Schroth G and Zech W.1995. Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-deciduous rainforest zone of West Africa.Plant Soil.170: 297–306.

    Article  CAS  Google Scholar 

  • Shearer G and Kohl D.H.1986. N2 fixation in field settings: estimations based on natural 15N abundance.Aust. J. Plant Physiol.13: 699–756.

    Google Scholar 

  • Sierra J., Dulormne M. and Desfontaines L.2002. Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles.Agrofor. Syst.54: 87–97.

    Article  Google Scholar 

  • Simard S.W., Perry D.A., Jones M.D., Myrold D.D., Durall D.M. and Molina R.1997. Net transfer of carbon between ectomycorrhizal tree species in the field.Nature388: 579–582.

    Article  CAS  Google Scholar 

  • Snoeck D., Zapata F. and Domenach A.M.2000. Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees.Biotechnol. Agron. Soc. Environ.4: 95–100.

    CAS  Google Scholar 

  • Wittingham J. and Read D.J.1982. Vesicular-arbuscular mycorrhiza in natural vegetation systems III. Nutrient transfer between plants with mycorrhizal connections.New Phytol.90: 277–284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sierra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulormne, M., Sierra, J., Nygren, P. et al. Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agroforestry Systems 59, 121–129 (2003). https://doi.org/10.1023/A:1026387711571

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026387711571

Navigation