Skip to main content
Log in

Synchrotron-Based FTIR Spectromicroscopy: Cytotoxicity and Heating Considerations

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Synchrotron radiation-based Fouriertransform infrared (SR-FTIR)spectromicroscopy is a newly emergingbioanalytical and imaging tool. This uniquetechnique provides mid-infrared (IR)spectra, hence chemical information, withhigh signal-to-noise at spatial resolutionsas fine as 3 to 10 microns. Thus it enablesresearchers to locate, identify, and trackspecific chemical events within anindividual living mammalian cell. Mid-IRphotons are too low in energy (0.05–0.5eV) to either break bonds or to causeionization. In this review, we show thatthe synchrotron IR beam has no detectableeffects on the short- and long-termviability, reproductive integrity,cell-cycle progression, and mitochondrialmetabolism in living human cells, andproduces only minimal sample heating (<0.5°C). These studies haveestablished an important foundation forSR-FTIR spectromicroscopy in biological andbiomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wetzel, D.L. and LeVine, S.M.: Imaging Molecular Chemistry with Infrared Microscopy,Science (Washington DC)285 (1999), 1224-1225.

    Google Scholar 

  2. Parker, F.S.:Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine, New York, Plenum Press, 1971.

    Google Scholar 

  3. Mantsch, H.H. and Chapman, D.:Infrared Spectroscopy of Biomolecules, New York, Wiley-Liss, 1996.

    Google Scholar 

  4. Stuart, B. and Ando, D.J.:Biological Applications of Infrared Spectroscopy, Chichester, New York, Published on behalf of ACOL (University of Greenwich) by John Wiley, 1997.

  5. Reffner, J.A., Martoglio, P.A. and Williams, G.P.: Fourier Transform Infrared Microscopical Analysis with Synchrotron Radiation-the Microscope Optics and System Performance,Rev. Sci. Instr. 66 (1995), 1298-1302.

  6. Carr, G.L., Reffner, J.A. and Williams, G.P.: Performance of an Infrared Microspectrometer at the NSLS,Rev. Sci. Instr. 66 (1995), 1490-1492.

  7. Wetzel, D.L., Reffner, J.A. and Williams, G.P.: Synchrotron-powered FT-IR Microspectroscopy: Single Cell Interrogation,Mikrochimica Acta (1997), 353-355.

  8. Miller, L.M., Carr, G.L., Williams, G.P. and Chance, M.R.: Synchrotron Infrared Microspectroscopy as a Means of Studying Chemical Composition at a Cellular Level,Biophys. J. 72 (1997), A214.

  9. Jamin, N., Dumas, P., Moncuit, J., Fridman, W.-H., Teillaud, J.-L., Carr, G.L. and Williams, G.P.: Highly Resolved Chemical Imaging of Living Cells by using Synchrotron Infrared Microspectrometry,Proc. Nat. Acad. Sci. USA 95 (1998), 4837-4840.

  10. Jamin, N., Dumas, P., Moncuit, J., Fridman, W.H., Teillaud, J.L., Carr, G.L. and Williams, G.P.: Chemical Imaging of Nucleic Acids, Proteins and Lipids of a Single Living Cell, Application of Synchrotron Infrared Microspectrometry in Cell Biology,Cell. Mol. Biol. 44 (1998), 9-13.

  11. Holman, H.-Y.N., Zhang, M., Goth-Goldstein, R., Martin, M.C., Russell, M., McKinney, W.R., Ferrari, M. and Hunter-Cevera, J.C.: Detecting Exposure to Environmental Organic Toxins in Individual Cells: Toward Development of a Microfabricated Device, In: M. Ferrari (ed.),Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications II, SPIE Proceedings, Bellingham, WA, 1999, pp. 55-63.

  12. Holman, H.-Y.N., Goth-Goldstein, R., Martin, M.C., Russell, M.L. and McKinney, W.R.: Lowdose Responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin in Single Living Human Cells measured by Synchrotron Infrared Spectromicroscopy,Envir. Sci. Technol. 34 (2000), 2513-2517.

  13. Holman, H.-Y.N., Martin, M.C. Blakely, E.A., Bjornstad, K. and McKinney, W.R.: IR Spectroscopic Characteristics of Cell Cycle and Cell Death probed by Synchrotron Radiation based Fourier Transform IR Spectromicroscopy,Biopolymers: Biospectr. 5(7) (2000), 329-335.

  14. Choo, L.-P.I., Wetzel, D.L., Halliday, W.C., Jackson, M., Levine, S.M. and Mantsch, H.H.:In Situ Characterization of Beta-Amyloid in Alzheimer's Diseased Tissue by Synchrotron Fourier Transform Infrared Microspectroscopy,Biophys. J. 71 (1996), 1672-1679.

  15. Miller, L.M., Carlson, C.S., Carr, G.L and Chance, M.R.: A Method for Examining the Chemical Basis for Bone Disease: Synchrotron Infrared Microspectroscopy,Cell. Mol. Biol. (Noisy-Le-Grand)44 (1998), 117-127.

    Google Scholar 

  16. Briki, F., Busson, B., Kreplak, L., Dumas, P. and Doucet, J.: Exploring a Biological Tissue from Atomic to Macroscopic Scale using Synchrotron Radiation: Example of Hair,Cell. Mol. Biol. 46 (2000), 1005-1016.

  17. Miller, L.M., Tibrewala, J. and Carlson, C.S.: Examination of Bone Chemical Composition in Osteoporosis using Fluorescence-assisted Synchrotron Infrared Microspectroscopy,Cell. Mol. Biol. 46 (2000), 1035-1044.

  18. Holman, H.-Y.N., Perry, D.L., Martin, M.C., Lamble, G.M., McKinney, W.R. and Hunter-Cevera, J.C.: Real-time Characterization of Biogeochemical Reduction of Cr(VI) on Basalt Surfaces by SR-FTIR Imaging,Geomicrobiol. J. 16 (1999), 307-324.

  19. Geller, J.T., Holman, H.Y., Su, G., Conrad, M.E., Pruess, K. and Hunter-Cevera, J.C.: Flow Dynamics and Potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones,J. Cont. Hydrol. 43 (2000), 63-90.

  20. Miller, L.M., Pedraza, A.J. and Chance, M.R.: Identification of Conformational Substates involved in Nitric Oxide Binding to Ferric and Ferrous Myoglobin through Difference Fourier Transform Infrared Spectroscopy (FTIR),Biochemistry 36 (1997), 12199-12207.

  21. Xie, A.H., He, Q., Miller, L., Sclavi, B. and Chance, M.R.: Low Frequency Vibrations of Amino Acid Homopolymers observed by Synchrotron far-IR Absorption Spectroscopy: Excited State Effects dominate the Temperature Dependence of the Spectra,Biopolymers 49 (1999), 591-603.

  22. Raab, T.K. and Martin, M.C.: Visualizing Rhizosphere Chemistry of Legumes with mid-IR Synchrotron Radiation,Planta 213 (2001), 881-887.

  23. McKinney, W.R., Hirschmugl, C.J., Padmore, H.A., Lauritzen, T., Andresen, N., Andronaco, G., Patton, R. and Fong, M.: The First Infrared Beamline at the ALS: Design, Construction, and Initial Commissioning, In:Accelerator-Based Infrared Sources and Applications, SPIE, San Diego, CA, 1997.

    Google Scholar 

  24. McKinney, W.R. et al.: First Infrared Beamlines at the ALS: Final Commissioning and New End Stations, In:Accelerator-Based Sources of Infrared and Spectroscopic Applications, SPIE Proceedings, Denver, CO, 1999.

  25. Martin, M.C. and McKinney, W.R.: The First Synchrotron Infrared Beamlines at the Advanced Light Source: Microspectroscopy and Fast Timing, In:Applications of Synchrotron Radiation Techniques to Materials Science IV, Materials Research Society, 1998.

  26. Carr, G.L.: Resolution Limits for Infrared Microspectroscopy explored with Synchrotron Radiation,Rev. Sci. Instr. 72 (2001), 1613-1619.

  27. Carr, G.L.: High-Resolution Microspectroscopy and Sub-Nanosecond Time-Resolved Spectroscopy with the Synchrotron Infrared Source,Vibr. Spectr. 19 (1999), 53-60.

  28. Holman, H.-Y.N., Bjornstad, K.A., McNamara, M.P., Martin, M.C., McKinney, W.R. and Blakely, E.A.: Synchrotron Infrared Spectromicroscopy as a Novel Bioanalytical Microprobe for Individual Living Cells: Cytotoxicity Considerations,J. Biomed. Opt. 7 (2002), 417-424.

  29. van der Veen, J., Bots, L. and Mes, A.: Establishment of Two Human Cell Strains from Kidney Reticulosarcoma of Lung,Arch. Ges. Virusforsch. 8 (1958), 230-238.

  30. Barendsen, G.W., Koot, C.J., Van Kersen, G.R., Bewley, D.K. Field, S.B. and Parnell, C.J.: The Effect of Oxygen on Impairment of the Proliferative Capacity of Human Cells in Culture by Ionizing Radiations of Different LET,Int. J. Rad. Biol. Rel. Stud. Phys. Chem. Med. 10 (1966), 317-327.

  31. Blakely, E.A., Chang, P.Y. and Lommel, L.: Cell-Cycle-dependent Recovery from Heavy-Ion Damage in G-1-phase Cells,Radiation Res. 104 (1985), S-145-S-157.

  32. Blakely, E.A. et al.: Cell-Cycle Dependence of X-Ray Oxygen Effect Role of Endogenous Glutathione,NCI (National Cancer Institute) Monogr. (1988), 217-224.

  33. Blakely, E.A.: Cell Inactivation by Heavy Charged Particles,Rad. Envir. Biophys. 31 (1992), 181-196.

  34. Blakely, E.A., Tobias, C.A., Yang, T.C., Smith, K.C. and Lyman, J.T.: Inactivation of Human Kidney Cells by High-Energy Monoenergetic Heavy-Ion Beams,Radiation Res. 80 (1979), 122-160.

  35. Thompson, A.C., Underwood, J.H., Anderson, E.H., McHugo, S.A. and Lai, B.P.: Characterization of the Focal Quality of Micron-Size Beams from X-ray Mirrors and Zone Plates, In:Advances in X-Ray Optics, SPIE Proceedings, San Diego, CA, 2000.

  36. Yip, D.K. and Auersperg, N.: The Dye-Exclusion Test for Cell Viability: Persistence of Differential Staining Following Fixation,In Vitro 7 (1972), 323-329.

  37. Slater, T.F.:Biochim. Biophys. Acta 77 (1963), 383.

  38. Martin, M.C., Tsvetkova, N.M., Crowe, J.H. and McKinney, W.R.: Negligible Sample Heating from Synchrotron Infrared Beam,Appl. Spectr. 55 (2001), 111-113.

  39. Janiak, M.J., Small, D.M. and Shipley, G.G.: Temperature and Compositional Dependence of the Structure of Hydrated Dimyristoyl Lecithin,J. Biol. Chem. 254 (1979), 6068-6078.

  40. Ruocco, M.J. and Shipley, G.G.: Characterization of the Subtransition of Hydrated DPPC Bilayers. Kinetics, Hydration and Structural Study,Biochim. Biophys. Acta 691 (1982), 309-320.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holman, HY., Martin, M. & McKinney, W. Synchrotron-Based FTIR Spectromicroscopy: Cytotoxicity and Heating Considerations. Journal of Biological Physics 29, 275–286 (2003). https://doi.org/10.1023/A:1024465414395

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024465414395

Navigation