Skip to main content
Log in

The Cavity Method at Zero Temperature

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this note we explain the use of the cavity method directly at zero temperature, in the case of the spin glass on a lattice with a local tree like structure, which is the proper generalization of the usual Bethe lattice to frustrated problems. The computation is done explicitly in the formalism equivalent to “one step replica symmetry breaking;” we compute the energy of the global ground state, as well as the complexity of equilibrium states at a given energy. Full results are presented for a Bethe lattice with connectivity equal to three. The main assumptions underlying the one step cavity approach, namely the existence of many local ground states, are explicitely stated and discussed: some of the main obstacles towards a rigorous study of the problem with the cavity method are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Mézard, G. Parisi, and M. A. Virasoro, Europhys. Lett. 1:77(1985).

    Google Scholar 

  2. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  3. O. C. Martin, R. Monasson, and R. Zecchina, Theor. Comp. Sci. 256:3-67 (2001), and references therein.

    Google Scholar 

  4. M. Mézard, G. Parisi, and R. Zecchina, Science 297:812(2002); M. Mézard and R. Zecchina, cond-mat/0207194.

    Google Scholar 

  5. M. Mézard, F. Ricci-Tersenghi, and R. Zecchina, condmat/0207140.

  6. S. Cocco, O. Dubois, J. Mandler, and R. Monasson, cond-mat/0206239.

  7. M. Talagrand, Probab. Theory Related Fields 110:109(1998).

    Google Scholar 

  8. A. Bovier and B. Niederhauser, cond-mat/0108235.

  9. M. Mézard and G. Parisi, Eur. Phys. J. B 20:217(2001).

    Google Scholar 

  10. An alternative derivation of the energy density goes as follows. In the limit of large N and q, with q ≪ N we must have:E(N, q)=NU + qR + O(q2/ N)) We easily find that 2R=-δE(2)U-(k+1) R=δE(1). Solving the previous equation we recover Eq. (7). Under this last form the argument may be easily generalized to lattices with random connectivity.

  11. M. W. Klein, L. J. Schowalter, and P. Shukla, Phys. Rev. B 19:1492(1979).

    Google Scholar 

  12. S. Katsura, S. Inawashiro, and S. Fujiki, Phys. A 99:193(1979).

    Google Scholar 

  13. K. Nakanishi, Phys. Rev. B 23:3514(1981).

    Google Scholar 

  14. D. R. Bowman and K. Levin, Phys. Rev. B 25:3438(1982).

    Google Scholar 

  15. D. J. Thouless, Phys. Rev. Lett. 56:1082(1986).

    Google Scholar 

  16. J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Commun. Math. Phys. 106:41(1986); J. M. Carlson, J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, Europhys. Lett. 5:355 (1988).

    Google Scholar 

  17. M. Mézard and G. Parisi, Europhys. Lett. 3:1067(1987).

    Google Scholar 

  18. I. Kanter and H. Sompolinsky, Phys. Rev. Lett. 58:164(1987).

    Google Scholar 

  19. J. M. Carlson, J. T. Chayes, L. Chayes, J. P. Sethna, and D. J. Thouless, J. Statist. Phys. 61:987(1990); J. M. Carlson, J. T. Chayes, J. P. Sethna, and D. J. Thouless, J. Statist. Phys. 61:1069 (1990).

    Google Scholar 

  20. It is easy to check that this expression is equal to the zero temperature limit of the general finite temperature iteration formula used in ref. 9.

  21. C. De Dominicis and P. Mottishaw, J. Phys. A 20:L375(1987).

    Google Scholar 

  22. P. Mottishaw, Europhys. Lett. 4:333(1987).

    Google Scholar 

  23. R. C. Dewar and P. Mottishaw, J. Phys. A 21:L1135(1988).

    Google Scholar 

  24. P. Y. Lai and Y. Y. Goldschmidt, J. Phys. A 22:399(1989).

    Google Scholar 

  25. C. De Dominicis and Y. Y. Goldschmidt, J. Phys. A 22:L775(1989); and C. De Dominicis and Y. Y. Goldschmidt Phys. Rev. B 41:2184 (1990).

    Google Scholar 

  26. E. J. Gumbel, Statistics of Extremes (Columbia University Press, NY, 1958).

    Google Scholar 

  27. J.-P. Bouchaud and M. Mézard, J. Phys. A 30:7997(1997).

    Google Scholar 

  28. One could use the expression imprecise probabilities to describe this situation.

  29. G. Parisi, J. Phys. A 13:L115, 1101, 1887 (1980).

    Google Scholar 

  30. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792(1975).

    Google Scholar 

  31. R. Monasson, Phys. Rev. Lett. 75:2847(1995).

    Google Scholar 

  32. F. Guerra, Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model, cond-mat/0205123.

  33. K. Y. Wong and D. Sherrington, J. Phys. A 21:L459(1988).

    Google Scholar 

  34. Y. Y. Goldschmidt and P.-Y. Lai, J. Phys. A 23:L775(1990).

    Google Scholar 

  35. A. Montanari, Eur. Phys. J. B 23:121(2001).

    Google Scholar 

  36. S. Franz, M. Leone, F. Ricci-Tersenghi, and R. Zecchina, Phys. Rev. Lett. 87:127209(2001).

    Google Scholar 

  37. D. J. Thouless, P. W. Anderson, and R. G. Palmer, Phil. Mag. 35:593(1977).

    Google Scholar 

  38. A. J. Bray and M. A. Moore, J. Phys. C 13:L469(1980).

    Google Scholar 

  39. C. De Dominicis, M. Gabay, T. Garel, and H. Orland, J. Phys. 41:923(1980).

    Google Scholar 

  40. G. Biroli and R. Monasson, Europhys. Lett. 50:155(2000)

    Google Scholar 

  41. A. Cavagna, I. Giardina, M. Mézard, and G. Parisi, in preparation.

  42. K. Nemoto and H. Takayama, J. Phys. C 18:L529(1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mézard, M., Parisi, G. The Cavity Method at Zero Temperature. Journal of Statistical Physics 111, 1–34 (2003). https://doi.org/10.1023/A:1022221005097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022221005097

Navigation