Skip to main content
Log in

On the TAP Equations via the Cavity Approach in the Generic Mixed p-Spin Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 1977, Thouless, Anderson, and Palmer (TAP) derived a system of consistent equations in terms of the effective magnetization in order to study the free energy in the Sherrington–Kirkpatrick (SK) spin glass model. The solutions to their equations were predicted to contain vital information about the landscapes in the SK Hamiltonian and the TAP free energy and moreover have direct connections to Parisi’s replica ansatz. In this work, we aim to investigate the validity of the TAP equations in the generic mixed p-spin model. By utilizing the ultrametricity of the overlaps, we show that the TAP equations are asymptotically satisfied by the conditional local magnetizations on the asymptotic pure states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Hamiltonian of the mixed p-spin model defined in [2, 30, 38] includes all indices \((i_1,\ldots ,i_p)\in \{1,\ldots ,N\}^p.\) However, the same conclusions remain valid in our setting since dropping the repeated indices is of a smaller order term in the free energy.

  2. Talagrand’s result asserts that the N TAP equations asymptotically hold simultaneously with high probability, while we establish the TAP equations in the average sense.

  3. Girffith’s lemma: Let \(f_N\) be a sequence of differentiable convex functions defined on an open interval I. Assume that \(f_N\) converges f pointwise on I. If f is differentiable at some \(x\in I,\) then \(\lim _{N\rightarrow \infty }f_N'(x)=f'(x).\)

References

  1. Adhikari, A., Brennecke, C., von Soosten, P., Yau, H.-T.: Dynamical approach to the TAP equations for the Sherrington–Kirkpatrick model. J. Stat. Phys. 183(35), 1–27 (2021)

    MathSciNet  Google Scholar 

  2. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. Auffinger, A., Jagannath, A.: On spin distributions for generic \(p\)-spin models. J. Stat. Phys. 174(2), 316–332 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Auffinger, A., Jagannath, A.: Thouless-Anderson-Palmer equations for generic \(p\)-spin glasses. Ann. Probab. 47(4), 2230–2256 (2019)

    Article  MathSciNet  Google Scholar 

  5. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean field spin glasses. Rigorous Results Annales Henri Poincaré 16, 691–708 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bayati, M., Montanari, A.: The dynamics of message passing on dense graphs, with applications to compressed sensing. IEEE Trans. Inf. Theory 57(2), 764–785 (2011)

    Article  MathSciNet  Google Scholar 

  7. Belius, D.: High temperature TAP upper bound for the free energy of mean field spin glasses. arXiv preprint arXiv:2204.00681, (2022)

  8. Belius, D., Kistler, N.: The TAP-Plefka variational principle for the spherical SK model. Commun. Math. Phys. 367(3), 991–1017 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bolthausen, E.: An iterative construction of solutions of the TAP equations for the Sherrington-Kirkpatrick model. Commun. Math. Phys. 325(1), 333–366 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bolthausen, E.: A Morita type proof of the replica-symmetric formula for SK. In: Statistical Mechanics of Classical and Disordered Systems. volume 293 of Springer Proceedings in Mathematics & Statistics, pp. 63–93. Springer, Cham (2019)

    Google Scholar 

  11. Brennecke, E., Yau, H.-T.: The replica symmetric formula for the SK model revisited. J. Math. Phys. 63(073302), 1–12 (2022)

    MathSciNet  Google Scholar 

  12. Chatterjee, S.: Spin glasses and Stein’s method. Probab. Theory Relat. Fields 148(3–4), 567–600 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chen, W.-K., Panchenko, D.: On the TAP free energy in the mixed \(p\)-spin models. Commun. Math. Phys. 362(1), 219–252 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, W.-K., Panchenko, D., Subag, E.: Generalized TAP free energy. Commun. Pure Appl. Math. (2018)

  15. Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy II. Commun. Math. Phys. 381(1), 257–291 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chen, W.-K., Tang, S.: On Convergence of the Cavity and Bolthausen’s TAP Iterations to the Local Magnetization. Commun. Math. Phys. 386, 1209–1242 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. de Almeida, J.R.L., Thouless, D.J.: Stability of the sherrington-kirkpatrick solution of a spin glass model. J. Phys. A 11(5), 983–990 (1978)

    Article  ADS  Google Scholar 

  18. El Alaoui, A., Montanari, A., Sellke, M.: Optimization of mean-field spin glasses. Ann. Probab. 49(6), 2922–2960 (2021)

    Article  MathSciNet  Google Scholar 

  19. Jagannath, A.: Approximate ultrametricity for random measures and applications to spin glasses. Commun. Pure Appl. Math. 70, 611–664 (2017)

    Article  MathSciNet  Google Scholar 

  20. Javanmard, A., Montanari, A.: State evolution for general approximate message passing algorithms, with applications to spatial coupling. Inf. Inference J. IMA 2(2), 115–144 (2013)

    MathSciNet  Google Scholar 

  21. Kabashima, Y., Krzakala, F., Mézard, M., Sakata, A., Zdeborová, L.: Phase transitions and sample complexity in bayes-optimal matrix factorization. IEEE Trans. Inf. Theory 62(7), 4228–4265 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, vol. 9. World Scientific Publishing Co. Inc, Teaneck, NJ (1987)

    Google Scholar 

  23. Mézard, M., Virasoro, M.A.: The microstructure of ultrametricity. Journal de Physique 46(8), 1293–1307 (1985)

    Article  MathSciNet  Google Scholar 

  24. Montanari, A.: Optimization of the Sherrington–Kirkpatrick Hamiltonian. SIAM J. Comput. 0(0):FOCS19–1, (2021)

  25. Montanari, A., Richard, E.: Non-negative principal component analysis: Message passing algorithms and sharp asymptotics. IEEE Trans. Inf. Theory 62(3), 1458–1484 (2015)

    Article  MathSciNet  Google Scholar 

  26. Montanari, A., Venkataramanan, R.: Estimation of low-rank matrices via approximate message passing. Ann. Stat. 49(1), 321–345 (2021)

    Article  MathSciNet  Google Scholar 

  27. Panchenko, D.: On differentiability of the Parisi formula. Electron. Commun. Probab. 13, 241–247 (2008)

    Article  MathSciNet  Google Scholar 

  28. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. 383–393 (2013)

  29. Panchenko, D.: The Sherrington-Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  30. Panchenko, D.: The Parisi formula for mixed \( p \)-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MathSciNet  Google Scholar 

  31. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43(23), 1754 (1979)

    Article  ADS  CAS  Google Scholar 

  32. Parisi, G.: A sequence of approximated solutions to the SK model for spin glasses. J. Phys. A: Math. Gen. 13(4), L115 (1980)

    Article  ADS  Google Scholar 

  33. Parisi, G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50(24), 1946 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  34. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1972)

    Article  ADS  Google Scholar 

  35. Subag, E.: Following the ground-states of full-RSB spherical spin glasses. Commun. Pure Appl. Math. 74, 1021–1044 (2020)

    Article  MathSciNet  Google Scholar 

  36. Subag, E.: TAP approach for multi-species spherical spin glasses I: general theory. arXiv preprint arXiv:2111.07132, (2021)

  37. Subag, E.: TAP approach for multi-species spherical spin glasses II: the free energy of the pure models. Ann. Probab. 51(3), 1004–1024 (2021)

    MathSciNet  Google Scholar 

  38. Talagrand, M.: The Parisi formula. Ann. Math. 221–263 (2006)

  39. Talagrand, M.: Construction of pure states in mean field models for spin glasses. Probab. Theory Relat. Fields 148, 601–643 (2006)

    Article  MathSciNet  Google Scholar 

  40. Talagrand, M.: Mean field models for spin glasses. Volume I, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin, 2011. Basic examples

  41. Talagrand, M.: Mean field models for spin glasses. Volume II, volume 55 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2011. Advanced replica-symmetry and low temperature

  42. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of ‘solvable model of a spin glass’. Philos. Mag. 35(3), 593–601 (1977)

    Article  ADS  CAS  Google Scholar 

  43. Zdeborová, L., Krzakala, F.: Statistical physics of inference: Thresholds and algorithms. Adv. Phys. 65(5), 453–552 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

W.-K. Chen’s research is partly supported by NSF grants (DMS-1752184 and DMS-2246715) and the Simons fellowship (#1027727). S. Tang’s research is partly supported by the Simons Collaboration Grant (#712728) and the NSF LEAPS-MPS Award (DMS-2137614). Both authors thank A. Auffinger for explaining their work [3] and M. Sellke for pointed out a few typos. They also thank anonymous referees for carefully reading the manuscript and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Kuo Chen.

Additional information

Communicated by S.Chatterjee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proofs of Propositions 4.2 and 4.3

The proofs of Propositions 4.2 and 4.3 are based on the following lemma:

Lemma A.1

There exists a constant \(K= K(\beta , h)>0\) such that for all \(N\ge 1\) and small \(\epsilon >0,\)

$$\begin{aligned} \sum _{p\ge 2}\big (\mathbb E\big \langle |A_{p}^\alpha |^{4} \big \rangle _{N,\beta }\big )^{\frac{1}{4}}\le K\quad \text{ and }\quad \sum _{p\ge 2}\big (\mathbb E\big \langle |B_{p}^{\rho }|^4 \big \rangle _{N,\beta }\big )^{\frac{1}{4}}\le K. \end{aligned}$$

Proof

For notation simplicity, we suppress the superscript \(\alpha \) and write \(A_p^{\alpha }\) as \(A_p\). We handle the series of \(A_p\) first. Note that for each p, we only need to consider the case, \(N\ge p\), otherwise \(A_p=0\) by the definition (41). Write

$$\begin{aligned} \mathbb E\big \langle A_{p}^{4} \big \rangle _{N,\beta }&= \mathbb E\bigg \langle \Big (\frac{\beta _{p}^{2}p!}{N^{p-1}}\Big )^2 \Big (\sum _{1\le i_1<\cdots <i_{p-1}\le N-1} g_{i_1,\ldots , i_{p-1},N}\langle \sigma _{i_1} \rangle _{N,\beta }^{\alpha }\cdots \langle \sigma _{i_{p-1}} \rangle _{N,\beta }^\alpha \Big )^{4} \bigg \rangle _{N,\beta }\nonumber \\&=\Big (\frac{\beta _{p}^{2}p!}{N^{p-1}}\Big )^2\sum _{\alpha \in \Sigma _{N}}\sum _{{{\textbf{i}}}_1,\ldots , {{\textbf{i}}}_{4}}\mathbb E\Big [ G_{N,\beta }(\alpha )\prod _{l=1}^{4}g_{{{\textbf{i}}}_l,N} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Big ], \end{aligned}$$
(62)

where the second sum is over all \({{\textbf{i}}}_l = (i_{l,1},\cdots , i_{l, p-1})\), for \(l=1,2,3,4\) that are \((p-1)\)-tuples with strictly increasing coordinates from \(\{1,2, \ldots , N-1\}^{p-1}\). We note that there are \(\left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) \) choices for each \({{\textbf{i}}}_l\). Write \(g_{i_{l,1},\ldots , i_{l, p-1}, N}\) as \(g_{{{\textbf{i}}}_l, N}\) and let \(\Delta _p:=\beta _{p}\sqrt{p!}{N^{-(p-1)/2}}.\) We have

$$\begin{aligned} \Delta _p^2 \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right)&=\frac{\beta _p^2p!}{N^{p-1}}\,\frac{(N-1)(N-2)\cdots (N-(p-1))}{(p-1)!}\\&=\beta _p^2p\frac{N-1}{N}\cdot \frac{N-2}{N}\cdots \frac{N-(p-1)}{N}\le \beta _p^2p. \end{aligned}$$

Also, there exists a constant \(C>0\) independent of \(p,N,{{\textbf{i}}}\) such that for any \(0\le k_1,k_2,k_3,k_4\le 4\), if we let \(d=k_1+k_2+k_3+k_4,\) then

$$\begin{aligned} \Bigl |\partial ^{k_1}_{g_{{{\textbf{i}}}_1,N}}\partial ^{k_2}_{g_{{\textbf{i}}_2,N}} \partial ^{k_3}_{g_{{{\textbf{i}}}_3,N}}\partial ^{k_4}_{g_{{\textbf{i}}_4,N}} G_{N,\beta }(\alpha )\Bigr |&\le C\Delta _p^{d}G_{N,\beta }(\alpha )\le C\Delta _p^d(p-1)^dG_{N,\beta }(\alpha ) \end{aligned}$$
(63)

and

$$\begin{aligned} \Bigl |\partial ^{k_1}_{g_{{{\textbf{i}}}_1,N}}\partial ^{k_2}_{g_{\textbf{i}_2,N}} \partial ^{k_3}_{g_{{{\textbf{i}}}_3,N}}\partial ^{k_4}_{g_{{\textbf{i}}_4,N}} \prod _{l=1}^4\prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Bigr |&\le C\Delta _p^{d}(p-1)^d. \end{aligned}$$
(64)

These can be established by an induction argument on d. Now we divide the collection of \(({{\textbf{i}}}_1,{{\textbf{i}}}_2,{\textbf{i}}_3,{{\textbf{i}}}_4)\) into three cases and compute, respectively, an upper bound for the summand in (62) under each case. In the following discussion, \(C_1,C_1',C_2,C_2',\ldots \) are absolute constants independent of N and p.

  • Case I: all 4 tuples are distinct. Applying Gaussian integration by part and the chain rule, we get

    $$\begin{aligned}&\ \ \ \Big |\mathbb EG_{N,\beta }(\alpha )g_{{{\textbf{i}}}_1,N}g_{{\textbf{i}}_2,N}g_{{{\textbf{i}}}_3,N}g_{{{\textbf{i}}}_4,N} \prod _{l=1}^{4}\prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Big | \le C_1\Delta _p^4(p-1)^4\mathbb EG_{N,\beta }(\alpha ) . \end{aligned}$$

    Since the number of choices for \(({{\textbf{i}}}_1,{{\textbf{i}}}_2, {\textbf{i}}_3, {{\textbf{i}}}_4)\) in Case I are no more than \(\left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^4\), the summation in (62) for Case I is bounded by

    $$\begin{aligned}&\Delta _p^4\sum _{\alpha \in \Sigma _{N}}\sum _{{\tiny \mathrm Case\,\,I}} \Big |\mathbb EG_{N,\beta }(\alpha )g_{{{\textbf{i}}}_1,N}g_{{{\textbf{i}}}_2,N}g_{{{\textbf{i}}}_3,N}g_{{{\textbf{i}}}_4,N} \prod _{l=1}^{4}\prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Big |\\&\quad \le \Delta _p^4\cdot \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^4\cdot C_1\Delta _p^4(p-1)^4\le C_1\beta _p^8p^8. \end{aligned}$$
  • Case II: there are three distinct tuples in \(({{\textbf{i}}}_1, {{\textbf{i}}}_2, {{\textbf{i}}}_3, {{\textbf{i}}}_4)\). Without loss of generality, suppose \({{\textbf{i}}}_1 = {{\textbf{i}}}_2\) and they are both different from distinct \({{\textbf{i}}}_3,{{\textbf{i}}}_4\). In this case, again using Gaussian integration by part twice and the chain rule, each summand in (62) is bounded in absolute value by

    $$\begin{aligned} \Bigl |\mathbb EG_{N,\beta }(\alpha )g^2_{{{\textbf{i}}}_1,N}g_{{\textbf{i}}_3,N}g_{{{\textbf{i}}}_4,N}\prod _{l=1}^{4} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Bigr |\le C_2 \Delta _p^2(p-1)^2\mathbb Eg_{{{\textbf{i}}}_1,N}^2 G_{N,\beta }(\alpha ). \end{aligned}$$

    It follows that

    $$\begin{aligned}&\Delta _p^4\sum _{\alpha \in \Sigma _{N}}\sum _{{\tiny \mathrm Case\,\,II}} \Big |\mathbb EG_{N,\beta }(\alpha )g_{{{\textbf{i}}}_1,N}g_{{{\textbf{i}}}_2,N}g_{{{\textbf{i}}}_3,N}g_{{{\textbf{i}}}_4,N} \prod _{l=1}^{4}\prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Big |\\&\quad \le C_2'\Delta _p^4\cdot \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^3\cdot \Delta _p^2(p-1)^2 \cdot \mathbb Eg_{{{\textbf{i}}}_1,N}^2\\&\quad \le C_2'\Delta _p^6 \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^3(p-1)^2\le C_2'\beta _p^6p^5 \end{aligned}$$
  • Case III: there are no more than two distinct tuples. In this case, we have three possibilities, each bounded in absolute value respectively as follows:

    $$\begin{aligned} \Bigl |\mathbb EG_{N,\beta }(\alpha )g^2_{{{\textbf{i}}}_1,N}g^2_{{{\textbf{i}}}_2,N}\prod _{l=1}^{4} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Bigr |&\le \mathbb EG_{N,\beta }(\alpha )g^2_{{{\textbf{i}}}_1,N}g^2_{{{\textbf{i}}}_2,N} ,\\ \Bigl |\mathbb EG_{N,\beta }(\alpha )g^1_{{{\textbf{i}}}_1,N}g^3_{{{\textbf{i}}}_2,N}\prod _{l=1}^{4} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Bigr |&\le \mathbb EG_{N,\beta }(\alpha ) \left| g^1_{{{\textbf{i}}}_1,N}g^3_{{{\textbf{i}}}_2,N}\right| ,\\ \Bigl |\mathbb EG_{N,\beta }(\alpha )g^4_{{{\textbf{i}}}_1,N}\prod _{l=1}^{4} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Bigr |&\le \mathbb EG_{N,\beta }(\alpha )g^4_{{{\textbf{i}}}_1,N}. \end{aligned}$$

    Consequently,

    $$\begin{aligned}&\Delta _p^4\sum _{\alpha \in \Sigma _{N}}\sum _{{\tiny \mathrm Case\,\,III}} \Big |\mathbb EG_{N,\beta }(\alpha )g_{{{\textbf{i}}}_1,N}g_{{{\textbf{i}}}_2,N}g_{{{\textbf{i}}}_3,N}g_{{{\textbf{i}}}_4,N} \prod _{l=1}^{4}\prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N,\beta }^{\alpha }\Big |\\&\quad \le C_3\Delta _p^4\cdot \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^2\cdot \left[ \mathbb Eg^2_{{{\textbf{i}}}_1,N}g^2_{{{\textbf{i}}}_2,N} + \mathbb E\left| g^1_{{{\textbf{i}}}_1,N}g^3_{{{\textbf{i}}}_2,N}\right| + \mathbb Eg^4_{{{\textbf{i}}}_1,N}\right] \\&\quad \le C_3'\Delta _p^4\cdot \left( {\begin{array}{c}N-1\\ p-1\end{array}}\right) ^2 \le C_3'\beta _p^4p^2. \end{aligned}$$

Combining all three cases, we have

$$\begin{aligned} \mathbb E\big \langle A_{p}^{4} \big \rangle _{N,\beta }&\le C_4\bigl (\beta _{p}^{4}p^2 + \beta _{p}^{6}p^{5}+\beta _p^{8}p^8\bigr ). \end{aligned}$$

Since \(\sum _{p\ge 2} 2^{p}\beta _{p}^{2} < \infty \), we have \(\beta _{p}^{2}= o(2^{-p})\) as \(p\rightarrow \infty \). Choosing \(p_0\) large enough such that \(\beta _{p} \le 2^{-p/2}\) and \(p^2 < 2^{p/4}\) for all \(p>p_0\), it follows that

$$\begin{aligned} \sum _{p>p_{0}}\bigl (\mathbb E\big \langle A_{p}^{4} \big \rangle _{N,\beta }\bigr )^{1/4}&\le C_4 \sum _{p> p_{0}}\bigl (\beta _{p}^{4}p^2 + \beta _{p}^{6}p^{5}+\beta _p^{8}p^8\bigr )^{1/4}\le 3C_4 \sum _{p> p_{0}}\beta _{p}p^{2}\\&\le 3C_4 \sum _{p>p_0} 2^{-p/2}p^2 \le 3C_4 \sum _{p>p_0} 2^{-p/4} <\infty . \end{aligned}$$

For the summability for the series of \(B_p^\rho \), the proof is essentially the same; the only change is that in (62), \(\langle \sigma _{j} \rangle _{N,\beta }^{\alpha }\) will be replaced by \(s_{j}^\rho \). Notice that \( |s_j^\rho | \le 1\) and any partial derivatives of \(s_{j}^\rho \) of degree \(d\le 4\) with respect to the variables \((g_{{{\textbf{i}}},N})_{{{\textbf{i}}}}\) are bounded by \(\Delta _p^d\) up to an absolute constant independent of pN and \({{\textbf{i}}}\). For example,

$$\begin{aligned} \bigg |\frac{\partial s_{j}^{\rho }}{\partial g_{{{\textbf{i}}}, N}} \bigg |&=\bigg | \Delta _p \frac{\big \langle \tau _j\tau _{i_1}\cdots \tau _{i_{p-1}}\tau _N\sinh (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}^{\rho }}{\big \langle \cosh (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}^{\rho }}\Big .\\&\qquad \Big .- \Delta _p \frac{s_j^{\rho }\big \langle \tau _{i_1}\cdots \tau _{i_{p-1}}\tau _N\sinh (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}^{\rho }}{\big \langle \cosh (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}^{\rho }}\bigg |\le 2\Delta _p. \end{aligned}$$

More general partial derivatives can be controlled by an induction argument on the number of differentiations. This implies that (64) with \(\langle \sigma _{j} \rangle _{N,\beta }^{\alpha }\) replaced by \(s_j^\rho \) is also valid. We omit the rest of the details. \(\square \)

Proof of Proposition 4.2

Similar to (65), we have

$$\begin{aligned} \mathbb E\bigg \langle \Big [\sum _{p>p_0}A_p^\alpha \Big ]^{4} \bigg \rangle _{N, \beta } \le \Big (\sum _{p>p_0}\bigl (\mathbb E\big \langle A_{p}^{4} \big \rangle _{N,\beta }\bigr )^{\frac{1}{4}}\Big )^{4}. \end{aligned}$$

Since \(\bigl (\mathbb E\big \langle A_{p}^{4} \big \rangle _{N,\beta }\bigr )^{1/4}\) is summable, as proved in Lemma A.1, the right hand side can be made arbitrarily small by choosing \(p_0\) sufficiently large. The other assertion can be treated similarly. \(\square \)

Proof of Proposition 4.3

Note that for any \(p_1, p_2,p_3, p_{4}\ge 2\), using Hölder’s inequality yields

$$\begin{aligned} \mathbb E\big \langle A_{p_{1}}^\alpha A_{p_2}^\alpha A_{p_3}^\alpha A_{p_{4}}^\alpha \big \rangle _{N,\beta } \le \Big (\mathbb E\big \langle |A_{p_1}^\alpha |^{4} \big \rangle _{N,\beta }\mathbb E\big \langle |A_{p_2}^\alpha |^{4} \big \rangle _{N,\beta }\mathbb E\big \langle |A_{p_3}^\alpha |^{4} \big \rangle _{N,\beta }\mathbb E\big \langle |A_{p_{4}}^\alpha |^{4} \big \rangle _{N,\beta }\Big )^{\frac{1}{4}}, \end{aligned}$$

which implies that

$$\begin{aligned} \mathbb E\big \langle \big [X_{N,\beta }\bigl (\langle \sigma \rangle _{N,\beta }^{\alpha }\bigr )\big ]^{4} \big \rangle _{N, \beta } = \mathbb E\bigg \langle \Big (\sum _{p\ge 2}A_{p}^\alpha \Big )^{4} \bigg \rangle _{N,\beta }\le \Big (\sum _{p\ge 2}\big (\mathbb E\big \langle |A_{p}^\alpha |^{4} \big \rangle _{N,\beta }\big )^{\frac{1}{4}}\Big )^{4}. \end{aligned}$$
(65)

By the Cauchy–Schwarz inequality and Lemma A.1,

$$\begin{aligned} \mathbb E\big \langle \big [X_{N,\beta }(\langle \sigma \rangle _{N,\beta }^{\alpha }){\mathbb {1}}_{\{G_{N-1,\beta '}(A_{\ominus }^{\rho })<\delta \}}\big ]^2 \big \rangle _{N, \beta }&\le \Big (\mathbb E\big \langle X^4_{N,\beta }(\langle \sigma \rangle _{N,\beta }^{\alpha }) \big \rangle _{N,\beta }\mathbb E\big \langle {\mathbb {1}}_{\{G_{N-1,\beta '}(A_{\ominus }^{\rho })<\delta \}} \big \rangle _{N, \beta } \Big )^{1/2}\\&\le \sqrt{K}\Big (\mathbb E\big \langle {\mathbb {1}}_{\{G_{N-1,\beta '}(A_{\ominus }^{\rho })<\delta \}} \big \rangle _{N, \beta } \Big )^{1/2}. \end{aligned}$$

Thus, (43) follows from (22). The proof of (44) is exactly the same. \(\square \)

Proof of Lemma 4.4

Proof of Lemma 4.4

Fist of all, for any \(\tau \in \Sigma _{N-1}, \varvec{\tau }= (\tau ^1,\ldots ,\tau ^{p-1}) \in \Sigma _{N-1}^{p-1}\), \(X_{N,\beta }\) and \(Z_{N,p}\) are centered Gaussian random variables with variances bounded by \(C_\beta \) and p respectively, which result in

$$\begin{aligned} \mathbb E_{g_{\cdot N}}\bigl \langle |Z_{N,p}(\varvec{\tau })|^{k}\bigr \rangle _{N-1,\beta '}&\le p^{k/2}(k-1)!!,\\ \mathbb E_{g_{\cdot N}}\bigl \langle \cosh ^{k}(X_{N,\beta }(\tau )+h)\bigr \rangle _{N-1,\beta '}&\le e^{C_\beta k^2/2}\cosh ^k(h),\\ \mathbb E_{g_{\cdot N}}\cosh ^k(X_{N,\beta }(\tau )+h)&\le e^{C_\beta k^2/2}\cosh ^k(h). \end{aligned}$$

Using the nested structure (20) and the Hölder inequality with p conjugate exponents \(2r(p-1),2r(p-1),\ldots ,2r(p-1)\), and \(2r/(2r-1)\), we have

$$\begin{aligned} |D_p^\alpha -D_p^\rho |^{2r}&\le \bigg \langle \prod _{l=1}^{p-1}\cosh (X_{N,\beta }(\tau ^l)+h)\bigg (\prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l)\bigg ) \bigg \rangle _{N-1,\beta '}^{2r}\\&\le \big \langle \cosh ^{2r(p-1)} (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\bigg \langle \bigg (\prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l)\bigg )^{\frac{2r}{2r-1}} \bigg \rangle _{N-1,\beta '}^{2r-1}\\&\le \big \langle \cosh ^{2r(p-1)} (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\bigg \langle \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l) \bigg \rangle _{N-1,\beta '}, \end{aligned}$$

where the last inequality holds since \(\prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l)\in \{0,1\}\). Since

$$\begin{aligned} \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l)&\le \sum _{l=1}^{p-1}\mathbb {1}_{A_\oplus ^\rho \setminus A_\ominus ^\rho }(\tau ^l), \end{aligned}$$

we have

$$\begin{aligned} |D_p^\alpha -D_p^\rho |^{2r}&\le (p-1) \big \langle \cosh ^{2r(p-1)} (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\big \langle {\mathbb {1}}_{A_{\oplus }^{\rho }\setminus A_{\ominus }^\rho }(\tau ) \big \rangle _{N-1,\beta '}. \end{aligned}$$

From this, by a change of measure for \(\alpha =(\rho , \alpha _N)\sim G_{N,\beta }\) as in Lemma 3.2 and the Cauchy–Schwarz inequality, we obtain the second assertion,

$$\begin{aligned} \mathbb E\big \langle (D_p^\alpha -D_p^{\rho })^{2r} \big \rangle _{N,\beta }&\le \mathbb E\Bigl [\sum _{\rho }G_{N-1,\beta '}(\rho )\big \langle {\mathbb {1}}_{A_{\oplus }^{\rho }\setminus A_{\ominus }^\rho }(\tau ) \big \rangle _{N-1,\beta '}\\&\qquad \cdot \mathbb E_{g_{\cdot N}}\bigl [\cosh (X_{N,\beta }(\rho )+h)\big \langle \cosh ^{2r(p-1)} (X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\bigr ]\Bigr ]\\&\le \eta _N p e^{(4r^2 p^2 +1)C_\beta }\cosh ^{2rp}(h). \end{aligned}$$

For the first assertion, we similarly have

$$\begin{aligned} |C_p^\alpha -C_p^{\rho }|^{2r}&\le \left\langle Z_{N,p}^2(\varvec{\tau }) \right\rangle ^r_{N-1,\beta '}\bigg \langle \prod _{l=1}^{p-1}\cosh ^2(X_{N,\beta }(\tau ^l)+h)\bigg (\prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\oplus }^{\rho }}(\tau ^l) - \prod _{l=1}^{p-1}{\mathbb {1}}_{A_{\ominus }^{\rho }}(\tau ^l)\bigg )^2 \bigg \rangle _{N-1,\beta '}^{r}\\&\le (p-1)\big \langle Z_{N,p}^{2r}(\varvec{\tau }) \big \rangle ^r_{N-1,\beta '}\big \langle \cosh ^{2r(p-1)}(X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\big \langle {\mathbb {1}}_{A_{\oplus }^{\rho }\setminus A_\ominus ^\rho }(\tau ) \big \rangle _{N-1,\beta '}, \end{aligned}$$

where the first inequality used the Cauchy–Schwarz inequality and the second inequality was obtained by an analogous argument for \(|D_p^\alpha -D_p^\rho |^{2r}\). Via a change of measure for \(G_{N,\beta }\) as above, we can then apply the Hölder inequality in the expectation \(\mathbb E_{g_{\cdot N}}\) with thee conjugates exponents 3, 3, 3 to get the desired bound,

$$\begin{aligned} \begin{aligned}&\mathbb E\big \langle |C_p^\alpha -C_p^{\rho }|^{2r} \big \rangle _{N,\beta }\\&\quad \le \mathbb E\Bigl [\sum _{\rho }G_{N-1,\beta '}(\rho )\big \langle {\mathbb {1}}_{A_{\oplus }^{\rho }\setminus A_\ominus ^\rho }(\tau ^l) \big \rangle _{N-1,\beta '}\\&\qquad \cdot \mathbb E_{g_{\cdot N}}\bigl [\cosh (X_{N,\beta }(\rho )+h) \big \langle Z^{2r}_{N,p}(\varvec{\tau }) \big \rangle _{N-1,\beta '}\big \langle \cosh ^{2r(p-1)}(X_{N,\beta }(\tau )+h) \big \rangle _{N-1,\beta '}\bigr ]\Bigr ]\\&\quad \le \eta _N(p-1)p^{r}\bigl [(6r-1)!!\bigr ]^{1/3}e^{(3/2+6r^2 p^2)C_\beta }\cosh ^{2rp}(h). \end{aligned} \end{aligned}$$
(66)

\(\square \)

Proof of Lemma 5.3

Proof of Lemma 5.3

The proof is essentially the same as that for Proposition 4.2. First of all, we claim that there exists a constant \(K= K(\beta , h)>0\) such that for all \(N\ge 1\) and any small \(\epsilon >0\),

$$\begin{aligned} \sum _{p=2}^\infty \bigl (\mathbb E\langle |E_p^\rho |^4\rangle _{N,\beta }\bigr )^{1/4}&\le K. \end{aligned}$$
(67)

This part of the argument is analogous to the proof of Lemma A.1, but in a slightly simpler manner. We begin by rewriting

$$\begin{aligned} \mathbb E\big \langle |E^{\rho }_{p}|^{4} \big \rangle _{N,\beta }&= \mathbb E\bigg \langle \Big (\frac{\beta _{p}^{2}p!}{N^{p-1}}\Big )^2 \bigg (\sum _{1\le i_1<\cdots <i_{p-1}\le N-1}^{N-1} g_{i_1,\ldots , i_{p-1},N}\langle \sigma _{i_1} \rangle _{N,\beta '}^{\rho }\cdots \langle \sigma _{i_{p-1}} \rangle _{N-1,\beta '}^{\rho }\bigg )^{4} \bigg \rangle _{N,\beta }\\&=\Big (\frac{\beta _{p}^{2}p!}{N^{p-1}}\Big )^2\sum _{\alpha \in \Sigma _{N}}\sum _{{{\textbf{i}}}_1,\ldots , {{\textbf{i}}}_{4}}\mathbb E\Big [ G_{N,\beta }(\alpha )\prod _{l=1}^{4}g_{{{\textbf{i}}}_l,N} \prod _{k=1}^{p-1}\langle \sigma _{i_{l,k}} \rangle _{N-1,\beta '}^{\rho }\Big ]. \end{aligned}$$

When applying Gaussian integration by parts to control the last equation, we only need to differentiate \(G_{N,\beta }(\alpha )\) with respect to \(g_{{{\textbf{i}}}_l, N}\) and the bounds of the partial derivatives of \(G_{N,\beta }(\alpha )\) given by (63). An identical argument as in the proof of Lemma 4.2 implies our claim (67), the summability of \(\bigl (\mathbb E\langle |E_p^\rho |^4\rangle _{N,\beta }\bigr )^{1/4}\). With this claim, our assertion follows immediately since, similar to (65),

$$\begin{aligned} \mathbb E\bigg \langle \bigg [\sum _{p> p_0}E_p^\rho \bigg ]^4 \bigg \rangle _{N,\beta }\le \bigg (\sum _{p> p_0}\bigl (\mathbb E\langle |E_p^\rho |^4\rangle _{N,\beta }\bigr )^{1/4}\bigg )^4, \end{aligned}$$

and the right hand side can be made arbitrarily small by choosing \(p_0\) sufficiently large. \(\quad \square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WK., Tang, S. On the TAP Equations via the Cavity Approach in the Generic Mixed p-Spin Models. Commun. Math. Phys. 405, 87 (2024). https://doi.org/10.1007/s00220-024-04971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04971-2

Navigation