Skip to main content
Log in

Herbivorous Insects: Model Systems for the Comparative Study of Speciation Ecology

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Does ecological divergence drive species-level evolutionary diversification? How so and to what degree? These questions were central to the thinking of the evolutionary synthesis. Only recently, however, has the ecology of speciation become an important focus of empirical study. Here, we argue that ecologically specialized, phylogenetically diverse, and experimentally tractable herbivorous insect taxa offer great opportunities to study the myriad mechanisms by which ecology may cause reproductive isolation and promote speciation. We call for the development and integrated experimental study of a taxonomic diversity of herbivore model systems and discuss the availability and recent evaluation of suitable taxa. Most importantly, we describe a general comparative framework that can be used to rigorously test a variety of hypotheses about the relative contributions and the macroevolutionary generality of particular mechanisms. Finally, we illustrate important issues for the experimental analysis of speciation ecology by demonstrating the consequences of specialized host associations for ecological divergence and premating isolation in Neochlamisus bebbianae leaf beetles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, Y., 1991. Host race formation in the gall wasp Andricus mukigawae. Ent. Exp. Appl. 58: 15–20.

    Google Scholar 

  • Adams, D. & D.J. Funk, 1997. Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles: multivariate applications of the thin-plate spline. Syst. Biol. 46: 178–192.

    Google Scholar 

  • Allmon, W.D., 1992. A causal analysis of stages in allopatric speciation. Oxford Surv. Evol. Biol. 9: 219–257.

    Google Scholar 

  • Berlocher, S.H., 1998. Can sympatric speciation through host or habitat shift be proven from phylogenetic and biogeographic evidence? pp. 99–113 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, New York.

    Google Scholar 

  • Berlocher, S.H. & J.L. Feder, 2002. Sympatric speciation in phytophagous insects: moving beyond controversy? Ann. Rev. Entomol. 47: 773–815.

    Google Scholar 

  • Bernays, E.A., 1998. Evolution of feeding behavior in insect herbivores. Bioscience 48: 35–44.

    Google Scholar 

  • Bernays, E.A. & R.F. Chapman, 1994. Host-Plant Selection by Phytophagous Insects. Chapman and Hall, London.

    Google Scholar 

  • Bovey, P. & J.K. Maksymov, 1959. Le problème des races biologiques chez la tordeuse grise du mélèze Zeiraphera griseana (Hb.). Note préliminaire. Vierteljahrsschrift Naturforsch. Ges. Zürich. 104: 264–274.

    Google Scholar 

  • Brazner, J.C. & W.J. Etges, 1993. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. 2. effects of larval substrates on time to copulation, mate choice and mating propensity. Evol. Ecol. 7: 605–624.

    Google Scholar 

  • Brown, W.J., 1943. The Canadian species of Exema and Arthrochlamys (Coleoptera, Chrysomelidae). Can. Entomol. 75: 119–131.

    Google Scholar 

  • Brown, W.J., 1946. Some new Chrysomelidae, with notes on other species (Coleoptera). Can. Entomol. 78: 47–54.

    Google Scholar 

  • Brown, W.J., 1952. Some species of Phytophaga (Coleoptera). Can. Entomol. 84: 335–342.

    Google Scholar 

  • Brown, W.J., 1961. Notes on North American Chrysomelidae (Coleoptera). Can. Entomol. 93: 966–977.

    Google Scholar 

  • Bush, G.L., 1969. Sympatric host race formation and speciation in frugivorous flies of genus Rhagoletis (Diptera, Tephritidae). Evolution 23: 237–251.

    Google Scholar 

  • Bush, G.L. & R. Butlin. Sympatric speciation in insects: an overview, in Adaptive Speciation, edited by U. Dieckmann, H. Metz, M. Doebeli & D. Tautz. Cambridge University Press, Cambridge (in press).

  • Butlin, R.K., 1993. The variability of mating signals and preferences in the brown planthopper, Nilaparvata lugens (Homoptera, Delphacidae). J. Ins. Behav. 6: 125–140.

    Google Scholar 

  • Butlin, R.K., 1996. Co-ordination of the sexual signaling system and the genetic basis of differentiation between populations in the brown planthopper, Nilaparvata lugens. Heredity 77: 369–377.

    Google Scholar 

  • Carroll, S.P. & C. Boyd, 1992. Host race radiation in the soapberry bug: natural history with the history. Evolution 46: 1052–1069.

    Google Scholar 

  • Carroll, S.P. & H. Dingle, 1996. The biology of post-invasion events. Biol. Conserv. 78: 207–214.

    Google Scholar 

  • Carroll, S.P., H. Dingle & S.P. Klassen, 1998. Rapidly evolving adaptations to host ecology and nutrition in the soapberry bug. Evol. Ecol. 12: 955–968.

    Google Scholar 

  • Caillaud, M.C. & S. Via, 2000. Specialized feeding behavior in-fluences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156: 606–621.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1989. Patterns of speciation in Drosophila. Evolution 43: 362–381.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1997. Patterns of speciation in Drosophila revisited. Evolution 51: 295–303.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1998. The evolutionary genetics of speciation. Phil. Trans. R. Soc. Lond. B 353: 287–305.

    Google Scholar 

  • Craig, T.P., J.K. Itami, W.G. Abrahamson & J.D. Horner. 1993. Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47: 1696–1710.

    Google Scholar 

  • Craig, T.P., J.D. Horner & J.K. Itami, 1997. Hybridization studies on the host races of Eurosta solidaginis: implications for sympatric speciation. Evolution 51: 1552–1560.

    Google Scholar 

  • Craig, T.P., J.D. Horner & J.K. Itami, 2001. Genetics, experience, and host-plant preference in Eurosta solidaginis: implications for sympatric speciation. Evolution 51: 1552–1560.

    Google Scholar 

  • Day, K., 1984. Phenology, polymorphism and insect-plant relationships of the larch budmoth, Zeiraphera diniana (Guenée) (Lepidoptera: Tortricidae), on alternative conifer hosts in Britain. Bull. Entomol. Res. 74: 47–64.

    Google Scholar 

  • Denno, R.F., M.S. McClure & J.R. Ott, 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Ann. Rev. Entomol. 40: 297–331.

    Google Scholar 

  • Diehl, S.R. & G.L. Bush, 1984. An evolutionary and applied perspective of insect biotypes. Ann. Rev. Entomol. 29: 471–504.

    Google Scholar 

  • Dobzhansky, T., 1936. Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 21: 113–135.

    Google Scholar 

  • Dopman, E.B., G.A. Sword & D.M. Hillis, 2002. The importance of the ontogenetic niche in resource-associated divergence: evidence from a generalist grasshopper. Evolution 56: 731–740.

    Google Scholar 

  • Ehrlich, P.R. & P.H. Raven, 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Google Scholar 

  • Ehrman, L. & C. Petit, 1968. Genotype frequency and mating success in the willistoni species group of Drosophila. Evolution 22: 649–658.

    Google Scholar 

  • Emelianov, I., M. Drès, W. Baltensweiler & J. Mallet, 2002. Hostinduced assortative mating in host races of the larch budmoth. Evolution 55: 2002–2010.

    Google Scholar 

  • Etges, W.J., 1998. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life-history trait. Am. Nat. 152: 129–144.

    Google Scholar 

  • Etges, W.J. & M.A. Ahrens, 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158: 585–598.

    Google Scholar 

  • Farrell, B.D., 1998. ‘Inordinate fondness’ explained: Why are there so many beetles? Science 281: 555–559.

    Google Scholar 

  • Feder, J.L., 1998. The apple maggot fly, Rhagoletis pomonella: flies in the face of conventional wisdom about speciation? pp. 130–144 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, Oxford.

    Google Scholar 

  • Feder, J.L. & G.L. Bush, 1989. A field test of differential host plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera, Tephritidae) and its consequences for sympatric models of speciation. Evolution 43: 1813–1819.

    Google Scholar 

  • Feder, J.L. & K.E. Filchak, 1999. It's about time: the evidence for host plant-mediated selection in the apple maggot fly, Rhagoletis pomonella, and its implications for fitness trade-offs in phytophagous insects. Ent. Exp. Appl. 91: 211–225.

    Google Scholar 

  • Feder, J.L., S. Opp, B. Wazlo, K. Reynolds, W. Go & S. Spizak, 1994. Host fidelity as an effective premating barrier between sympatric races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 91: 7990–79994.

    Google Scholar 

  • Feder, J.L., J.B. Roethele, B. Wlazlo & S.H. Berlocher, 1997. Selective maintenance of allozyme differences among sympatric host races of the apple maggot fly. Proc. Natl. Acad. Sci. USA 94: 11417–11421.

    Google Scholar 

  • Filchak, K.E., J.B. Roethele & J.L. Feder, 2000. Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407: 739–742.

    Google Scholar 

  • Funk, D.J., 1996. The evolution of reproductive isolation in Neochlamisus leaf beetles: a role for selection. PhD Dissertation, State University of New York, Stony Brook, NY.

    Google Scholar 

  • Funk, D.J., 1998. Isolating a role for selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52: 1744–1759.

    Google Scholar 

  • Funk, D.J., 1999. Molecular systematics of cytochrome oxidase I and 16S from Neochlamisus leaf beetles and the importance of sampling. Mol. Biol. Evol. 16: 67–82.

    Google Scholar 

  • Futuyma, D.J. 1983. Selective factors in the evolution of host choice by phytophagous insects, pp. 227–244 in Herbivorous Insects, edited by S. Ahmad (ed.). Academic Press, San Diego, CA.

    Google Scholar 

  • Groman, J.D. & O. Pellmyr, 2000. Rapid evolution and specialization following host colonization in a yucca moth. J. Evol. Biol. 13: 223–226.

    Google Scholar 

  • Guldemond, J.A., 1990. Choice of host plant as a factor in reproductive isolation of the aphid genus Cryptomyzus (Homoptera, Aphididae). Ecol. Entomol. 15: 43–51.

    Google Scholar 

  • Hawthorne, D.J. & S. Via, 2001. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412: 904–907.

    Google Scholar 

  • Henry, C.S., 1994. Singing and cryptic speciation in insects. Trends Ecol. Evol. 9: 388–392.

    Google Scholar 

  • Horner, J.D., T.P. Craig & J.K. Itami, 1999. The influence of oviposition phenology on survival in the host races of Eurosta solidaginis. Entomol. Exp. Appl. 93: 121–129.

    Google Scholar 

  • Hunt, R.E., 1993. Role of vibrational signals in mating behavior of Spissistilus festinus (Homoptera, Membracidae). Ann. Entomol. Soc. Am. 86: 356–361.

    Google Scholar 

  • Itami, J.K., T.P. Craig & J.D. Horner, 1998. Factors affecting gene flow between the host races of Eurosta solidaginis, pp. 375–407 in Genetic Structure and Local Adaptation in Natural Insect Populations: Effects of Ecology, Life History, and Behavior, edited by S. Mopper & S.Y. Strauss. Chapman and Hall, New York.

    Google Scholar 

  • Jaenike, J., 1981. Criteria for ascertaining the existence of host races. Am. Nat. 117: 830–834.

    Google Scholar 

  • Jaenike, J., 1990. Host specialization in phytophagous insects. Ann. Rev. Ecol. Syst. 21: 243–273.

    Google Scholar 

  • Jiggins, C.D. & J. Mallet, 2000. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15: 250–255.

    Google Scholar 

  • Karren, J.B., 1972. A revision of the subfamily Chlamisinae of America north of Mexico (Coleoptera: Chrysomelidae). Univ Kansas Sci. Bull. 49: 875–988.

    Google Scholar 

  • Katakura, H., 1997. Species of Epilachna ladybird beetles. Zool. Sci. 14: 869–881.

    Google Scholar 

  • Katakura, H., M. Shioi & Y. Kira, 1989. Reproductive isolation by host specificity in a pair of phytophagous ladybird beetles. Evolution 43: 1045–1053.

    Google Scholar 

  • Landolt, P.J. & T.W. Phillips, 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Ann. Rev. Entomol. 42: 371–391.

    Google Scholar 

  • LeSage, L., 1984. Immature stages of Canadian Neochlamisus Karren (Coleoptera: Chrysomelidae). Can. Entomol. 116: 383–409.

    Google Scholar 

  • Lu, G.Q. & L. Bernatchez, 1999. Correlated trophic specialization and genetic divergence in sympatric whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution 53: 1491–1505.

    Google Scholar 

  • Maksymov, J.K., 1959. Beitrag zur Biologie und Ökologie des Grauen Lärchenwicklers, Zeiraphera griseana (Hb.) (Lepidoptera: Tortricidae) im Engadin. Mitt. Schweitz. Anst. forstl. Versuchw. 35: 277–315.

    Google Scholar 

  • Mayr, E., 1942. Systematics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mitter, C. & B. Farrell, 1991. Macroevolutionary aspects of insect-plant relationships, pp. 35–78 in Insect-Plant Interactions, Vol. 3, edited by E.A. Bernays. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Mitter, C., B. Farrell & B. Wiegmann, 1988. The phylogenetic study of adaptive zones: has herbivory promoted insect diversification? Am. Nat. 132: 107–128.

    Google Scholar 

  • Mopper, S. & S.Y. Strauss (eds), 1998. Genetic Structure and Local Adaptation in Natural Insect Populations: Effects of Ecology, Life History, and Behavior. Chapman and Hall, London.

    Google Scholar 

  • Morrell, V., 1999. Ecology returns to speciation studies. Science 284: 2106–2108.

    Google Scholar 

  • Muller, H.J., 1939. Reversibility in evolution considered from the standpoint of genetics. Biol. Rev. 14: 261–280.

    Google Scholar 

  • Muller, H.J., 1942. Isolating mechanisms, evolution and temperature. Biol. Symp. 6: 71–125.

    Google Scholar 

  • Nagel, L. & D. Schluter, 1998. Body size, natural selection, and speciation in sticklebacks. Evolution 52: 209–218.

    Google Scholar 

  • Newby, B.D. & W.J. Etges, 1998. Host preference among populations of Drosophila mojavensis (Diptera: Drosophilidae) that use different host cacti. J. Ins. Behav. 11: 691–712.

    Google Scholar 

  • Nishida, T., L.E. Pudjiastuti, S. Nakano, I. Abbas, S. Kahono, K. Nakamura & H. Katakura, 1997. The eggplant beetle on a leguminous weed: host race formation in progress? Tropics 7: 115–121.

    Google Scholar 

  • Nosil, P., B.J. Crespi & C.P. Sandoval, 2002. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417: 440–443.

    Google Scholar 

  • Orr, M.R. & T.B. Smith, 1998. Ecology and speciation. Trends Ecol. Evol. 13: 502–506.

    Google Scholar 

  • Pashley, D.P., 1986. Host associated genetic differentiation in fall armyworm: a sibling species complex? Ann. Entomol. Soc. Am. 79: 898–904.

    Google Scholar 

  • Pashley, D.P., 1988. Quantitative genetics, development and physiological adaptation in sympatric host strains of fall armyworm. Evolution 42: 93–102.

    Google Scholar 

  • Pashley, D.P., 1993. Causes of host-associated variation in insect herbivores: an example from fall armyworm. pp. 351–359 in Evolution of Insect Pests: the Pattern of Variation, edited by K.C. Kim. Wiley, New York.

    Google Scholar 

  • Pashley, D.P., A.M. Hammond & T.N. Hardy, 1992. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera, Noctuidae). Ann. Entomol. Soc. Am. 85: 400–405.

    Google Scholar 

  • Pashley, D.P. & J.A. Martin, 1987. Reproductive incompatibility between host strains of fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80: 731–733.

    Google Scholar 

  • Price, P.W., 1975. Introduction, pp. 1–19 in Evolutionary Strategies of Parasitic Insects, edited by P.W. Price. Plenum Press, London.

    Google Scholar 

  • Priesner, E., 1979. Specificity studies on pheromone receptors of noctuid and tortricid Lepidoptera, pp. 57–71 in Chemical Ecology: Odour Communication in Animals, edited by F.J. Ritter. North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Priesner, E. & W. Baltensweiler, 1987a. A study of pheromone polymorphism in Zeiraphera diniana Gn (Lep, Tortricidae). 1. Male pheromonal response types in European wild populations, 1978-1985. J. Appl. Entomol. 104: 234–256.

    Google Scholar 

  • Priesner, E. & W. Baltensweiler, 1987b. A study of pheromone polymorphism in Zeiraphera diniana Gn (Lep. Tortricidae). 2. Pheromonal response types in F1 hybrids between three host races. J. Appl. Entomol. 104: 433–448.

    Google Scholar 

  • Prokopy, R.J., A.L. Averill, S.S. Cooley & C.A. Roitberg, 1982. Associative learning in egglaying site selection by apple maggot flies. Science 218: 76–77.

    Google Scholar 

  • Prokopy, R.J., S.R. Diehl & S.S. Cooley, 1988. Behavioral evidence for host races in Rhagoletis pomonella flies. Oecologia 76: 138–147.

    Google Scholar 

  • Prowell, D.P., 1998. Sex linkage and speciation in Lepidoptera, pp. 309–319 in Endless Forms: Species and Speciation, edited by D.J. Howard & S.H. Berlocher. Oxford University Press, New York.

    Google Scholar 

  • Reissig, H. & D.C. Smith, 1978. Bioeconomics of Rhagoletis pomonella in Crataegus. Ann. Entomol. Soc. Am. 71: 155–159.

    Google Scholar 

  • Rundle, H.D., L. Nagel, J.W. Boughman & D. Schluter, 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287: 306–308.

    Google Scholar 

  • Sandoval, C.P., 1993. Geographic, ecological, and behavioral factors affecting spatial variation in color morph frequency in the walking stick Timema cristinae. PhD Dissertation. University of California, Santa Barbara.

    Google Scholar 

  • Schluter, D., 1996a. Ecological causes of adaptive radiation. Am. Nat. 148: S40–S64.

    Google Scholar 

  • Schluter, D., 1996b. Ecological speciation in postglacial lakes. Phil. Trans. Roy. Soc. Lond. B 351: 807–814.

    Google Scholar 

  • Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D., 2001. Ecology and the origin of species. Trends Ecol. Evol. 16: 372–381.

    Google Scholar 

  • Sezer, M. & R.K. Butlin, 1998. The genetic basis of oviposition preference differences between sympatric host races of the brown planthopper (Nilaparvata lugens). Proc. Roy. Soc. Lond. B 265: 2399–2405.

    Google Scholar 

  • Simpson, G.G., 1944. Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Smith, D.C., 1986. Genetic and reproductive isolation of Rhagoletis flies. PhD Thesis, University of Illinois, Urbana-Champaign, 189 pp.

    Google Scholar 

  • Spieth, H.T. & J.M. Ringo, 1983. Mating behavior and sexual isolation in Drosophila, pp. 223–284 in The Genetics and Biology of Drosophila, Vol. 3c, edited by M. Ashburner, H.L. Carson & J.N. Thompson Jr. Academic Press, New York.

    Google Scholar 

  • Stennett, M.D. & W.J. Etges, 1997. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23: 2803–2824.

    Google Scholar 

  • Strong, D.R., J.H. Lawton & R. Southwood, 1984. Insects on Plants. Harvard University Press, Cambridge.

    Google Scholar 

  • Sword, G.A. & E.B. Dopman, 1999. Developmental specialization and geographic structure of host plant use in a polyphagous grasshopper, Schistocerca emarginata (=lineata) (Orthoptera: Acrididae). Oecologia 120: 437–445.

    Google Scholar 

  • Szentesi, A. & T. Jermy, 1990. The role of experience in host plant choice by phytophagous insects, pp. 39–74 in Insect-Plant Interactions, Vol. 2, edited by E.A. Bernays. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Tilmon, K.J., T.K. Wood & J.D. Pesek, 1998. Genetic variation in performance traits and the potential for host shifts in Enchenopa treehoppers (Homoptera: Membracidae). Ann. Entomol. Soc. Am. 91: 397–403.

    Google Scholar 

  • Via, S., 1999. Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53: 1446–1457.

    Google Scholar 

  • Via, S., 2001. Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol. 16: 381–390.

    Google Scholar 

  • Via, S., Bouck, A.C. & S. Skillman, 2000. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environment. Evolution 54: 1626–1637.

    Google Scholar 

  • Walsh, B.D., 1864. On phytophagic varieties and phytophagic species. Proc. Entomol. Soc. Philadelphia 3: 403–430.

    Google Scholar 

  • Ward, L. & D.F. Spalding, 1993. Phytophagous British insects and mites and their food plant families: total numbers and polyphagy. Biol. J. Linn. Soc. 49: 257–276.

    Google Scholar 

  • Wiegmann, B.M., C. Mitter & B. Farrell, 1993. Diversification of carnivorous parasitic insects: extraordinary radiation or specialized dead end? Am. Nat. 142: 737–754.

    Google Scholar 

  • Wood, T.K., 1980. Intraspecific divergence in Enchenopa binotata Say (Homoptera: Membracidae) effected by host plant adaptation. Evolution 34: 147–160.

    Google Scholar 

  • Wood, T.K. & S.I. Guttman, 1982. Ecological and behavioral basis for reproductive isolation in the sympatric Enchenopa binotata complex (Homoptera: Membracidae). Evolution 36: 233–242.

    Google Scholar 

  • Wood, T.K. & M.C. Keese, 1990. Host plant induced assortative mating in Enchenopa treehoppers. Evolution 44: 619–628.

    Google Scholar 

  • Wood, T.K., H.J. Tilmon, A.B. Shantz, C.K. Harris & J. Pesek. 1999. The role of host-plant fidelity in initiating insect race formation. Evol. Ecol. Res. 1: 317–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, D.J., Filchak, K.E. & Feder, J.L. Herbivorous Insects: Model Systems for the Comparative Study of Speciation Ecology. Genetica 116, 251–267 (2002). https://doi.org/10.1023/A:1021236510453

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021236510453

Navigation