Skip to main content
Log in

Wave-matching method for mode analysis of dielectric waveguides

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Frequently the cross-section of a longitudinally homogeneous dielectric waveguide may be decomposed into rectangles with constant permittivity. For points inside these rectangles the wave equation for modal fields is solved analytically by expanding into functions with harmonic or exponential dependence on the transverse coordinates. Minimization of a least-squares expression for the remaining misfit on the boundary lines allows us to determine propagation constants and fields for guided modes. Semivectorial calculations for two sets of rib waveguides and the centre sections of a directional coupler and an MMI device show very good agreement with results found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Chiang, Opt. Quantum Electron. 26 (1994) 113.

    Article  Google Scholar 

  2. C. Vassallo, Opt. Quantum Electron. 29 (1997) 95.

    Article  Google Scholar 

  3. R. K. Varshney and A. Kumar, J. Lightwave Technol. 6 (1988) 601.

    Article  ADS  Google Scholar 

  4. A. Sharma. P. K. Mishra and A. K. Ghatak, J. Lightwave Technol. 6 (1988) 1119.

    Article  ADS  Google Scholar 

  5. P. N. Robson and P. C. Kendall (eds) Rib Waveguide Theory by the Spectral Index Method (Wiley, New York, 1990).

    Google Scholar 

  6. T. Rozzi, G. Cerri, M. N. Husain and L. Zappelli, IEEE Trans. Microwave Theory Tech. 39 (1991) 247.

    Article  Google Scholar 

  7. W. Huang and H. A. Haus, J. Lightwave Technol. 9 (1991) 56.

    Article  ADS  Google Scholar 

  8. G. M. Berry and S. V. Burke, Opt. Quantum Electron. 27 (1995) 921.

    Article  Google Scholar 

  9. K. S. Chiang, IEEE Trans. Microwave Theory Tech. 44 (1996) 692.

    Article  Google Scholar 

  10. B. M. A. Rahman and J. B. Davies, J. Lightwave Technol. 2 (1984) 682.

    Article  ADS  Google Scholar 

  11. B. M. A. Rahman and J. B. Davies, IEE Proc. 132 (1985) 349.

    Google Scholar 

  12. M. S. Stern, IEE Proc., J 135 (1988) 56.

    Google Scholar 

  13. M. S. Stern, IEE Proc., J 135 (1988) 333.

    Google Scholar 

  14. K. Bierwirth, N. Schulz and F. Arndt, IEEE Trans. Microwave Theory Tech. 34 (1986) 1104.

    Article  Google Scholar 

  15. U. Rogge and R. Pregla, J. Opt. Soc. Am. B 8 (1991) 459.

    Article  ADS  Google Scholar 

  16. Z.-E. Abid, K. L. Johnson and A. Gopinath, J. Lightwave Technol. 11 (1993) 1545.

    Article  ADS  Google Scholar 

  17. M. Koshiba, S. Maruyama and K. Hirayama, J. Lightwave Technol. 12 (1994) 495.

    Article  ADS  Google Scholar 

  18. J.-Y. Su, P.-K. Wei and W.-S. Wang, J. Lightwave Technol. 12 (1994) 2056.

    Article  ADS  Google Scholar 

  19. P. LÜsse, P. Stuwe, J. SchÜle and H.-G. Unger. J. Lightwave Technol. 12 (1994) 487.

    Article  ADS  Google Scholar 

  20. G. R. Hadley and R. E. Smith, J. Lightwave Technol. 13 (1995) 465.

    Article  ADS  Google Scholar 

  21. H. Noro and T. Nakayama, J. Lightwave Technol. 14 (1996) 1546.

    Article  ADS  Google Scholar 

  22. P.-L. Liu and B.-J. Li, IEEE J. Quantum Electron. 29 (1989) 2385.

    Article  ADS  Google Scholar 

  23. P.-L. Liu, S. L. Yang and D. M. Yuan, IEEE J. Quantum Electron. 29 (1993) 1205.

    Article  ADS  Google Scholar 

  24. P.-C. Lee and E. Voges, J. Lightwave Technol. 12 (1994) 215.

    Article  ADS  Google Scholar 

  25. F. Wijnands, H. J. W.M. Hoekstra, G. J. M. Krijnen and R. M. De Ridder, J. Lightwave Technol. 12 (1994) 2066.

    Article  ADS  Google Scholar 

  26. F. Wijnands, T. Rasmussen, H. J. W. M. Hoekstra, J. H. Povlsen and R. M. De Ridder, IEEE J. Quantum Electron. 33 (1997) 367.

    Article  ADS  Google Scholar 

  27. C. H. Henry and B. H. Verbeek, J. Lightwave Technol. 7 (1989) 308.

    Article  ADS  Google Scholar 

  28. A. S. SudbØ, Pure Appl. Opt. 2 (1993) 211.

    Article  ADS  Google Scholar 

  29. S. J. Hewlett and F. Ladouceur, J. Lightwave Technol. 13 (1995) 375.

    Article  ADS  Google Scholar 

  30. M. Shamonin and P. Hertel, Opt. Eng. 34 (1995) 849.

    Article  ADS  Google Scholar 

  31. H. J. W. M. Hoekstra, J. Lightwave Technol. 8 (1990) 789.

    Article  ADS  Google Scholar 

  32. J. B. Davies, IEEE Trans. Microwave Theory Tech. 21 (1973) 99.

    Article  MathSciNet  Google Scholar 

  33. B. M. A. Rahman and J. B. Davies, J. Lightwave Technol. 6 (1988) 52.

    Article  ADS  Google Scholar 

  34. M. Rajarajan, B. M. A. Rahman, T. Wongcharoen and K. T. V. Grattan, J. Lightwave Technol. 14 (1996) 2078.

    Article  ADS  Google Scholar 

  35. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Numerical Recipes in C, 2nd edn (Cambridge University Press, Cambridge, 1992).

    MATH  Google Scholar 

  36. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. Mckenney, S. Ostrouchov and D. Sorensen, LAPACK Users' Guide, 2nd edn (Society for Industrial and Applied Mathematics, Philadelphia, 1995).

    MATH  Google Scholar 

  37. M. S. Stern, P. C. Kendall and P. W. A. Mcilroy, IEE Proc., J 137 (1990) 21.

    Google Scholar 

  38. R. Ulrich and G. Ankele, Appl. Phys. Lett. 27 (1975) 337.

    Article  ADS  Google Scholar 

  39. J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck and K. P. Hilton, Appl. Phys. Lett. 61 (1992) 1754.

    Article  ADS  Google Scholar 

  40. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost and E. C. M. Pennings, J. Lightwave Technol. 10 (1992) 1843.

    Article  ADS  Google Scholar 

  41. M. Bachmann, P. A. Besse and H. Melchior, Appl. Opt. 33 (1994) 3905.

    Article  ADS  Google Scholar 

  42. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13 (1995) 615.

    Article  ADS  Google Scholar 

  43. C. M. Weinert and N. Agrawal, IEEE Photon. Technol. Lett. 7 (1995) 529.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmeyer, M. Wave-matching method for mode analysis of dielectric waveguides. Optical and Quantum Electronics 29, 907–922 (1997). https://doi.org/10.1023/A:1018581701193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018581701193

Keywords

Navigation