Skip to main content
Log in

Hydrothermal degradation mechanism of tetragonal Zirconia

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrothermal degradation mechanism of tetragonal ZrO2previously proposed by the author was elaborated. In this mechanism, the annihilation of oxygen vacancies is a crucial step, and the grain boundaries play an important role in propagating the degradation. The degradation process of a 3 mol% Y2O3doped ZrO2pellet annealed in water vapor was monitored via impedance spectroscopy, the bulk and the grain boundary resistivity, and the grain boundary thickness were all found to increase with increasing annealing time, proving the annihilation of oxygen vacancies in the bulk and especially at the grain boundaries. The fracture surfaces of the annealed pellet were studied by SEM, only intergranular cracks were observed, indicating the propagation of the degradation along the grain boundaries. The mechanism predicts that the electrode resistance should increase when the electrodes are exposed to water vapor. Silver electrodes on a 8 mol% Y2O3doped ZrO2pellet were annealed in the mixture of oxygen and water vapor, the electrode resistance was found to increase with increasing annealing time. The prediction was thus proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kobayashi, H. Kuwajima and T. Masaki, Solid State Ionics 3/4(1981) 489.

    Google Scholar 

  2. T. Sato and M. Shimada, J.Amer.Ceram.Soc. 67(1984) C-212.

    Google Scholar 

  3. K. Tsukama and M. Shimada, J.Mater.Sci.Lett. 4(1985) 857.

    Google Scholar 

  4. T. Sato and M. Shimada, J.Amer.Ceram.Soc. 68(1985) 356.

    Google Scholar 

  5. Y. Murase and E. Kato, ibid. 66(1983) 196.

    Google Scholar 

  6. Y. Murase and E. Kato., Ber.Dtsch.Keram.Ges. 57(1980) 86.

    Google Scholar 

  7. T. Sato, S. Ohtaki, T. Endo and M. Schimada, J.Amer.Ceram.Soc. 68(1985) C-320.

    Google Scholar 

  8. J.-F. Li, R. Watanabe, B.-P. Zhang, K. Asami and K. H. Hashimoto, J.Am.Ceram.Soc. 79(1996) 3109.

    Google Scholar 

  9. T. T. LepistÖ, P. V. Lintula and T. A. MÄntylÄ, Ceram.Eng.Sci.Proc. 9(1988) 1517.

    Google Scholar 

  10. F. F. Lange, G. L. Dunlop and B. I. Davis, J.Amer. Ceram.Soc. 69(1986) 237.

    Google Scholar 

  11. T. Sato, S. Ohtashi and M. Shimada, J.Mater.Sci. 20(1985) 1466.

    Google Scholar 

  12. J.-F. Li and R. Watanabe, Mater.Transactions JIM 37(1996) 1171.

    Google Scholar 

  13. M. Yoshimura, T. Noma, K. Kawabata and S. Somiya, J.Mater.Sci.Lett. 6(1987) 465.

    Google Scholar 

  14. M. Yoshimura, Am.Ceram.Soc.Bull. 67(1988) 1950.

    Google Scholar 

  15. M. T. Hernandez, J. R. Jurado and P. Duran, J.Amer.Ceram.Soc. 74(1991) 1254.

    Google Scholar 

  16. T. Sato and M. Shimada, Am.Ceram.Soc.Bull. 64(1985) 1382.

    Google Scholar 

  17. T. Sato, T. Endo, M. Shimada, T. Mitsudome and N. Otabe, J.Mater.Sci. 26(1991) 1346.

    Google Scholar 

  18. M. Hirano, Br.Ceram.Trans.J. 91(1992) 139.

    Google Scholar 

  19. M. Yoshimura, T. Hiuga and S. Somiya, J.Amer.Ceram. Soc. 69(1986) 583.

    Google Scholar 

  20. X. Guo, Solid State Ionics 112(1998) 113.

    Google Scholar 

  21. X. Guo., J.Phys.Chem.Solids 60(1999) 539.

    Google Scholar 

  22. X. Guo., Phys.Stat.Sol.(a) 117(2000) 191.

    Google Scholar 

  23. X. Guo., Adv.Eng.Mater. 2(2000) 604.

    Google Scholar 

  24. J. Livage, K. Doi and C. Mazieres, J.Amer.Ceram.Soc. 51(1968) 349.

    Google Scholar 

  25. P. Kountouros and G. Petzow, in “Science and Technology of Zirconia V,” edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Lancaster, Basel, 1993), p. 30.

    Google Scholar 

  26. K. D. Kreuer, Solid State Ionics 125(1999) 285.

    Google Scholar 

  27. X. Guo, Comput.Mater.Sci. 20(2001) 168.

    Google Scholar 

  28. J. Maier, Ber.Bunsenges.Phys.Chem. 90(1986) 26.

    Google Scholar 

  29. T. van Dijk and A. J. Burggraaf, Phys.Stat.Sol.(a) 63(1981) 229.

    Google Scholar 

  30. X. Guo and J. Maier, J.Electrochem.Soc. 148(2001) E121.

    Google Scholar 

  31. X. Guo, Phys.Stat.Sol.(a) 183(2001) 261.

    Google Scholar 

  32. X. Guo and R.-Z. Yuan, J.Mater.Sci. 30(1995) 923.

    Google Scholar 

  33. X. Guo., Solid State Ionics 80(1995) 159.

    Google Scholar 

  34. X. Guo, Solid State Ionics. 81(1995) 235.

    Google Scholar 

  35. X. Guo., J.Eur.Ceram.Soc. 16(1996) 575.

    Google Scholar 

  36. X. Guo., Solid State Ionics 96(1997) 247.

    Google Scholar 

  37. X. Guo., Solid State Ionics, 99(1997) 137.

    Google Scholar 

  38. S. P. S. Badwal and J. Drennan, J.Mater.Sci. 22(1987) 3231.

    Google Scholar 

  39. M. Kleitz, Solid State Ionics 3/4(1981) 513.

    Google Scholar 

  40. A. Mitterdorfer and L. J. Gauckler, ibid. 117(1999) 187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X. Hydrothermal degradation mechanism of tetragonal Zirconia. Journal of Materials Science 36, 3737–3744 (2001). https://doi.org/10.1023/A:1017925800904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017925800904

Keywords

Navigation