Skip to main content
Log in

Quantum Wells in Tilted Fields: Semiclassical Amplitudes and Phase Coherence Times

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Experiments on quantum wells in tilted fields have stimulated several groups to investigate semiclassical theories for the current fluctuations. As a result, there is now a sort of “Zoo” of different types of trajectories (Periodic Orbits, Normal Orbits, Central Closed Orbits, Ghost Periodic Orbits, Saddle Orbits, Minimal Orbits) which have all been used to analyse these experimental spectra. Here we review briefly the semiclassical descriptions for this system and discuss which types of trajectories are most appropriate in those regimes where one cannot use Periodic Orbits. We conclude that using either Saddle Orbits (SOs) or Minimal Orbits (MOs) yields excellent agreement with experiment and quantal calculations. We also investigate the damping of the amplitudes of POs (or other semiclassical trajectories). In these scaling systems, different experiments on wells of variable dimensions can correspond to the same classical dynamics and even the same effective ℏ. The trajectory associated with the experimental current oscillation is unchanged: the only significant alteration is a re-scaling of the period T of the PO, affecting only the amplitude damping factors τe−T/τ due to incoherent processes in the experiment. By comparing measurements of the same period-doubling feature of the current in 85 nm and 120 nm wells we can probe the value of τ from the change in the PO (or SO/MO) amplitudes which are estimated from the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Zobay and G. Alber, ``Periodic orbits and molecular photoabsorption,'' J. Phys. B 26, L539 (1993).

    Google Scholar 

  2. B. Huppert, B. Eckhardt, and V. Engel, ``Semiclassical photodissociation cross section for H2O,'' J. Phys. B: At. Mol. Opt. Phys. 30, 3191 (1997).

    Google Scholar 

  3. D. Wintgen, ``Connection between long-range correlations in quantum spectra and classi-cal periodic orbits,'' Phys. Rev. Lett. 58, 1589 (1987).

    Google Scholar 

  4. E. B. Bogomolny and D. C. Rouben, ``Semiclassical description for resonant tunneling,'' Europhys. Lett. 43, 111 (1998); Eur. Phys. J. B 9, 695 (1999).

    Google Scholar 

  5. E. E. Narimanov, N. R. Cerruti, H. U. Baranger, and S. Tomsovic, ``Chaos in quantum dots: Dynamical modulation of coulomb blockade peak heights,'' Phys. Rev. Lett. 83, 2640 (1999).

    Google Scholar 

  6. C. Gnachl, F. Capasso, E. E. Narimanov et al., ``High power directional emission from lasers with directional emission,'' Science 280, 1556 (1998).

    Google Scholar 

  7. B. Eckhardt, S. Fishman, K. Müller, and D. Wintgen, ``Semiclassical matrix elements from periodic orbits,'' Phys. Rev. A 45, 3531 (1992).

    Google Scholar 

  8. D. S. Saraga, Ph.D. thesis, University College London (1999), www.tampa.phys.ucl.ac.uk_ tdaniel_thesis.html.

  9. D. S.6Saraga and T. S. Montiro (in press, Nonlinearity) ``Semiclassical Gaussian matrix elements for chaotic quantum wells,'' eprint chao-dyn_9911009.

  10. T. M. Fromhold et al., ``Magnetotunneling spectroscopy of a quantum well in the regime of classical chaos,'' Phys. Rev. Lett. 72, 2608 (1994).

    Google Scholar 

  11. G. Müller, G. S. Boebinger, H. Mathur, L. N. Pfeiffer, and K. W. West, ``Precursors and transition to chaos in a quantum well in a tilted magnetic field,'' Phys. Rev. Lett. 75, 2875 (1995).

    Google Scholar 

  12. D. L. Shepelyansky and A. D. Stone, ``Chaotic Landau level mixing in classical and quan-tum wells,'' Phys. Rev. Lett. 74, 2098 (1995).

    Google Scholar 

  13. T. S. Monteiro and P. A. Dando, ``Chaos in a quantum well in tilted fields: A scaling system,'' Phys. Rev. E 53, 3369 (1996).

    Google Scholar 

  14. P. B. Wilkinson, T. M. Fromhold, and L. Eaves, ``Observation of scarred wavefunctions in a quantum well with chaotic electron dynamics,'' Nature 380, 608 (1996).

    Google Scholar 

  15. T. S. Monteiro, D. Delande, A. J. Fisher, and G. S. Boebinger, ``Bifurcations and the transition to chaos for the resonant tunneling diode,'' Phys. Rev. B 56, 3913 (1997).

    Google Scholar 

  16. E. E. Narimanov and A. D. Stone, ``Origin of strong scarring of wave functions in quan-tum wells in tilted magnetic fields,'' Phys. Rev. Lett. 80, 49 (1998).

    Google Scholar 

  17. E. E. Narimanov, A. D. Stone, and G. S. Boebinger, ``Semiclassical theory of magneto-transport through a quantum well,'' Phys. Rev. Lett. 80, 4024 (1998).

    Google Scholar 

  18. D. S. Saraga and T. S. Monteiro, ``Quantum chaos with complex, non-periodic orbits,'' Phys. Rev. Lett. 81, 5796 (1998).

    Google Scholar 

  19. D. S. Saraga, T. S. Monteiro, and D. C. Rouben, ``Periodic orbit theory for resonant tunnelling diodes: Comparison with quantum and experimental results,'' Phys. Rev. E 58, R2701 (1998).

    Google Scholar 

  20. E. E. Narimanov and A. D. Stone, ``Quantum chaos in quantum wells,'' Physica D 131, 221 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, T.S., Saraga, D.S. Quantum Wells in Tilted Fields: Semiclassical Amplitudes and Phase Coherence Times. Foundations of Physics 31, 355–370 (2001). https://doi.org/10.1023/A:1017546721313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017546721313

Keywords

Navigation