Skip to main content
Log in

Characterization of proteins and fibroblasts on thin inorganic films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The ability of biomaterial surfaces to regulate cell behavior requires control over surface chemistry and material microstructure. One of the goals in the development of silicon-based biomedical devices such as biosensors or drug delivery systems is improved biocompatibility which may be achieved through the deposition or adsorption of thin films. In this study, films of single crystal silicon, stoichiometric and low stress silicon nitride, doped and undoped polysilicon, as well as Arg-Gly-Asp (RGD) peptide adsorbed surfaces characterized in terms of protein adsorption or cellular adhesion for a period of four days. Protein adsorption studies using fibrinogen and albumin, two proteins implicated in cellular adhesion and surface activity, reveal that low stress silicon nitride surfaces have a 223%±2.50% greater protein adsorption compared to undoped polysilicon surfaces, followed by silicon nitride, unmodified silicon, and doped polysilicon surfaces, respectively. The thickness of the adsorbed albumin and fibrinogen layer on various thin films was measured by ellipsometry and compared to contact angle measurements. The greatest cellular adhesion was observed on undoped polysilicon, followed by unmodified (control) silicon, low stress silicon nitride, silicon nitride, and doped polysilicon surfaces. Cellular binding supports the differential protein adsorption found on modified and unmodified silicon surfaces. Understanding the biological response to thin films will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic silicon-based microdevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. N. Ttuner, W. Shain et al., Exp. Neurol. 156 (1999) 33-49.

    Google Scholar 

  2. S. Henry, D. V. Mcallister, M. G. Allen and M. R. Prausnitz, J. Pharm. Sci. 88(9) (1999) 948.

    Google Scholar 

  3. T. A. Desai, W. H. Chu, J. K. Tu, G. M. Beattie, A. Hayek and M. Ferrari, Biotechnol. and Bioeng. 57 (1998) 118-120.

    Google Scholar 

  4. S. S. Stensaas and L. J. Stensaas, Acta Neuropath. 41 (1978) 145-155.

    Google Scholar 

  5. L. T. Canhan, Adv. Mater. 7(12), (1995) 1033-1037.

    Google Scholar 

  6. J. D. Andrade and V. Hlady, Adv. Polym. Sci. 79 (1986) 1-63.

    Google Scholar 

  7. B. D. Ratner and D. G. Castner, “Surface Modification of Polymeric Biomaterials” (Plenum Press, New York, 1997).

    Google Scholar 

  8. M. Zhang, T. A. Desai and M. Ferrari, Biomaterials, 19 (1998) 953-960.

    Google Scholar 

  9. S. P. Massia and J. A. Hubbell, Anal. Biochem. 187 (1990) 292-301.

    Google Scholar 

  10. R. O. Hynes, Cell, 48(4) (1987) 549-554.

    Google Scholar 

  11. S. Margel, E. A. Vogler, L. Firment, T. Watt, S. Haynie and D. Y. Sogah, J. Biomed. Mater. Res. 27 (1993) 1463-1476.

    Google Scholar 

  12. B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, “Biomaterials Science: An Introduction to Materials in Medicine” (Academic Press, San Diego, 1996).

    Google Scholar 

  13. D. J. Hansford, PhD. Dissertation, University of California at Berkeley (1999).

  14. M. Malmsten and B. Lassen, in “Proteins at Interfaces II”, edited by T. A. Horbett and J. L. Brash (American Chemical Society, Washington DC, 1995) pp. 228-238.

    Google Scholar 

  15. C. F. Mandenius, S. Welin, B. Danielsson, I. Lundstrom and K. Mosbach, Anal. Biochem. 137 (1984) 106-114.

    Google Scholar 

  16. V. D. Bhat, B. Klitzman, K. Koger, G. A. Truskey and W. M. Reichert, J. Biomater. Sci. Polymer Edn. 9(11), (1998) 1117-1135.

    Google Scholar 

  17. R. C. Jaeger, “Introduction to Microelectronic Fabrication” V (Addison-Wesley, New York, 1998).

    Google Scholar 

  18. H. Elwing, Biomaterials 19 (1998) 397-406.

    Google Scholar 

  19. A. Ulman, “An Introduction to Ultrathin Organic Films” (Academic Press, Boston, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannoulis, C.S., Desai, T.A. Characterization of proteins and fibroblasts on thin inorganic films. Journal of Materials Science: Materials in Medicine 13, 75–80 (2002). https://doi.org/10.1023/A:1013646805593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013646805593

Keywords

Navigation