Skip to main content

Implications of the Nanoscopic Surface Modification on the Protein Adsorption and Cell Adhesion

  • Chapter
  • First Online:
Biobased Nanotechnology for Green Applications

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1138 Accesses

Abstract

Irrespective of the bulk properties of the implant materials, surface properties play a critical role during cell–surface or protein–surface interactions and determine the fate of the implant materials. Physio-chemical properties of surfaces such as surface chemistry, wettability and energy, and surface roughness determine the overall behaviour of the surfaces and can be tailored by various physical, chemical and biochemical surface modification techniques. The present chapter highlights the established understanding of the role of surface properties in regulating protein and cell behaviour at the molecular level. Various biophysical techniques have been described in detail to analyse adsorbed mass, protein conformation, and orientation during protein–surface interactions. We further emphasised on cell adhesion on surfaces that detailed description of integrin mediated cell adhesion. We also tried to establish a synergy how surface modification regulates protein adsorption which in turn governs cell responses on the solid surfaces. The chapter has been designed keeping in mind the young audience especially the beginners in the area of material science and surface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NL, Kumar A, Whitesides GM (1994) Using micromachining, molecular self-assembly, and wet etching to fabricate 0.1-1-. mu. m-scale structures of gold and silicon. Chem Mater 6(5):596–602

    Article  CAS  Google Scholar 

  • Alam N, Goel HL, Zarif MJ, Butterfield JE, Perkins HM, Sansoucy BG, Sawyer TK, Languino LR (2007) The integrin—growth factor receptor duet. J Cell Physiol 213(3):649–653

    Article  CAS  PubMed  Google Scholar 

  • Altankov G, Richau K, Groth T (2003) The role of surface zeta potential and substratum chemistry for regulation of dermal fibroblasts interaction. Mater Werkst 34(12):1120–1128

    Article  CAS  Google Scholar 

  • Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082

    Article  CAS  PubMed  Google Scholar 

  • Aucoin L, Griffith C, Pleizier G, Deslandes Y, Sheardown H (2002) Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci Polym Ed 13(4):447–462

    Article  CAS  PubMed  Google Scholar 

  • Azuma T, Ohiwa T, Okumura K, Farrell T, Nunes R, Dobuzinsky D, Fichtl G, Gutmann A (1996) Impact of reduced resist thickness on deep ultraviolet lithography. J Vac Sci Technol B 14(6):4246–4251

    Article  CAS  Google Scholar 

  • Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269

    Article  CAS  PubMed  Google Scholar 

  • Behera R, Das A, Hasan A, Pamu D, Pandey L, Sankar M (2020a) Deposition of biphasic calcium phosphate film on laser surface textured Ti–6Al–4V and its effect on different biological properties for orthopedic applications. J Alloys Compd:155683

    Google Scholar 

  • Behera R, Das A, Hasan A, Pamu D, Pandey L, Sankar M (2020b) Effect of TiO2 addition on adhesion and biological behavior of BCP-TiO2 composite films deposited by magnetron sputtering. Mater Sci Eng C:111033

    Google Scholar 

  • Behera RR, Hasan A, Sankar MR, Pandey LM (2018) Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol 352:420–436. https://doi.org/10.1016/j.surfcoat.2018.08.044

    Article  CAS  Google Scholar 

  • Biltresse S, Attolini M, Marchand-Brynaert J (2005) Cell adhesive PET membranes by surface grafting of RGD peptidomimetics. Biomaterials 26(22):4576–4587

    Article  CAS  PubMed  Google Scholar 

  • Bosman FT (1993) Integrins: cell adhesives and modulators of cell function. Histochem J 25(7):469–477

    Article  CAS  PubMed  Google Scholar 

  • Bouvard D, Brakebusch C, Gustafsson E, Aszódi A, Bengtsson T, Berna A, Fässler R (2001) Functional consequences of integrin gene mutations in mice. Circ Res 89(3):211–223

    Article  CAS  PubMed  Google Scholar 

  • Bouvard D, Pouwels J, De Franceschi N, Ivaska J (2013) Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 14(7):430–442

    Article  PubMed  CAS  Google Scholar 

  • Breault-Turcot J, Chaurand P, Masson J-F (2014) Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS. Anal Chem 86(19):9612–9619

    Article  CAS  PubMed  Google Scholar 

  • Brunette D (1986) Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp Cell Res 164(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Brunette D, Kenner G, Gould T (1983) Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J Dent Res 62(10):1045–1048

    Article  CAS  PubMed  Google Scholar 

  • Calalb MB, Polte TR, Hanks SK (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15(2):954–963. https://doi.org/10.1128/mcb.15.2.954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camper L, Hellman U, Lundgren-Åkerlund E (1998) Isolation, cloning, and sequence analysis of the integrin subunit α10, a β1-associated collagen binding integrin expressed on chondrocytes. J Biol Chem 273(32):20383–20389

    Article  CAS  PubMed  Google Scholar 

  • Cary LA, Chang JF, Guan JL (1996) Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 109(7):1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Cary LA, Han DC, Polte TR, Hanks SK, Guan JL (1998) Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140(1):211–221. https://doi.org/10.1083/jcb.140.1.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causa F, Battista E, Della Moglie R, Guarnieri D, Iannone M, Netti PA (2010) Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL. Langmuir 26(12):9875–9884

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran R, Yadav SA, Sivaperumal S (2020) Phytosynthesis and characterization of copper oxide nanoparticles using the aqueous extract of Beta vulgaris L and evaluation of their antibacterial and anticancer activities. J Clust Sci 31(1):221–230

    Article  CAS  Google Scholar 

  • Chang H-Y, Huang C-C, Lin K-Y, Kao W-L, Liao H-Y, You Y-W, Lin J-H, Kuo Y-T, Kuo D-Y, Shyue J-J (2014) Effect of surface potential on NIH3T3 cell adhesion and proliferation. J Phys Chem C 118(26):14464–14470

    Article  CAS  Google Scholar 

  • Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM (2000) Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 122(34):8303–8304

    Article  CAS  Google Scholar 

  • Chen H-C, Appeddu PA, Isoda H, Guan J-L (1996) Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 271(42):26329–26334. https://doi.org/10.1074/jbc.271.42.26329

    Article  CAS  PubMed  Google Scholar 

  • Chesmel K, Clark C, Brighton C, Black J (1995) Cellular responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell populations. J Biomed Mater Res 29(9):1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Chodniewicz D, Klemke RL (2004) Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta, Mol Cell Res 1692(2–3):63–76. https://doi.org/10.1016/j.bbamcr.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  • Choi CK, Breckenridge MT, Chen CS (2010) Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. Trends Cell Biol 20(12):705–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun U, Mebrahtu H, LaBean T, Finkelstein G. Single-electron transistors made by chemical patterning of silicon dioxide substrates and selective deposition of gold nanoparticles. In: APS Meeting Abstracts, 2009. p 38005

    Google Scholar 

  • Crampton N, Bonass WA, Kirkham J, Thomson NH (2005) Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA. Langmuir 21(17):7884–7891

    Article  CAS  PubMed  Google Scholar 

  • Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors 10(11):9630–9646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danen EH, Yamada KM (2001) Fibronectin, integrins, and growth control. J Cell Physiol 189(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Delaittre G, Greiner AM, Pauloehrl T, Bastmeyer M, Barner-Kowollik C (2012) Chemical approaches to synthetic polymer surface biofunctionalization for targeted cell adhesion using small binding motifs. Soft Matter 8(28):7323–7347

    Article  CAS  Google Scholar 

  • Demanèche S, Chapel J-P, Monrozier LJ, Quiquampoix H (2009) Dissimilar pH-dependent adsorption features of bovine serum albumin and α-chymotrypsin on mica probed by AFM. Colloids Surf B: Biointerfaces 70(2):226–231

    Article  PubMed  CAS  Google Scholar 

  • Den Braber E, De Ruijter J, Smits H, Ginsel L, Von Recum A, Jansen J (1996) Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials 17(11):1093–1099

    Article  Google Scholar 

  • Douzi B (2017) Protein–protein interactions: surface plasmon resonance. In: Bacterial protein secretion systems. Springer, pp 257–275

    Google Scholar 

  • Dubiel EA, Martin Y, Vermette P (2011) Bridging the gap between physicochemistry and interpretation prevalent in cell− surface interactions. Chem Rev 111(4):2900–2936

    Article  CAS  PubMed  Google Scholar 

  • Dulcey CS, Georger JH Jr (1991) Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies. Science 252(5005):551

    Article  CAS  PubMed  Google Scholar 

  • Evans AL, Müller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat Genet 24(4):424–428

    Article  CAS  Google Scholar 

  • Ferreira GN, Da-Silva A-C, Tomé B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27(12):689–697

    Article  CAS  PubMed  Google Scholar 

  • Flemming R, Murphy CJ, Abrams G, Goodman S, Nealey P (1999) Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588

    Article  CAS  PubMed  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(24):4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulga F, Nicolau DV (2006) Biomolecular layers: quantification of mass and thickness. Wiley Encyclopedia of Biomedical Engineering

    Google Scholar 

  • Gitlin I, Carbeck JD, Whitesides GM (2006) Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed 45(19):3022–3060

    Article  CAS  Google Scholar 

  • Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron−/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32(13):3395–3403

    Article  CAS  PubMed  Google Scholar 

  • Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703

    Article  CAS  PubMed  Google Scholar 

  • Guan J-L, Trevithick JE, Hynes R (1991) Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul 2(11):951–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Calalb MB, Harper MC, Patel SK (1992) Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci 89(18):8487–8491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Ryzhova L, Shin NY, Brábek J (2003) Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8:d982–d996

    Article  CAS  PubMed  Google Scholar 

  • Hartvig RA, Van De Weert M, Østergaard J, Jorgensen L, Jensen H (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27(6):2634–2643

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Lee K, Tewari K, Pandey L, Messersmith PB, Faulds K, Maclean M, Lau KHA (2020a) Surface design for immobilization of an antimicrobial peptide mimic for efficient anti‐biofouling. Chem – Eur J 26:5789–5793

    Google Scholar 

  • Hasan A, Pandey L (2018) Self-assembled monolayers in biomaterials. In: Nanobiomaterials. Elsevier, pp 137–178

    Google Scholar 

  • Hasan A, Pandey LM (2015) Review: polymers, surface-modified polymers, and self assembled monolayers as surface-modifying agents for biomaterials. Polym-Plast Technol Eng 54(13):1358–1378

    Article  CAS  Google Scholar 

  • Hasan A, Pandey LM (2016) Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate. Mater Sci Eng C 68:423–429

    Article  CAS  Google Scholar 

  • Hasan A, Pandey LM (2020) Surface modification of Ti6Al4V by forming hybrid self-assembled monolayers and its effect on collagen-I adsorption, osteoblast adhesion and integrin expression. Appl Surf Sci 505:144611

    Article  CAS  Google Scholar 

  • Hasan A, Pattanayek SK, Pandey LM (2018a) Effect of functional groups of self-assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater Sci Eng 4(9):3224–3233

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Saxena V, Castelletto V, Zimbitas G, Seitsonen J, Ruokolainen J, Pandey LM, Sefcik J, Hamley IW, Lau KHA (2020b) Chain-end modifications and sequence arrangements of antimicrobial peptoids for mediating activity and nano-assembly. Front Chem 8:416. https://doi.org/10.3389/fchem.2020.00416

  • Hasan A, Saxena V, Pandey LM (2018b) Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir 34(11):3494–3506

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Pandey LM (2018c) Conformational and organizational insights into serum proteins during competitive adsorption on self-assembled monolayers. Langmuir 34(28):8178–8194

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Saxena V, Pandey LM (2018d) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111:923–934

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM (2017) Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A 105(9):2391–2404

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama H, Kikuchi A, Yamato M, Okano T (2007) Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28(25):3632–3643

    Article  CAS  PubMed  Google Scholar 

  • Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226(4675):630–636

    Article  CAS  PubMed  Google Scholar 

  • Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415

    Article  CAS  PubMed  Google Scholar 

  • Herzer N, Hoeppener S, Schubert US, Fuchs H, Fischer UC (2008) Chemical nanostructures of multifunctional self‐assembled monolayers. Adv Mater 20(2):346–351

    Article  CAS  Google Scholar 

  • Hohenester E, Engel J (2002) Domain structure and organisation in extracellular matrix proteins. Matrix Biol 21(2):115–128

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Kajihara M, Imanishi Y (1991) Materials for enhancing cell adhesion by immobilization of cell‐adhesive peptide. J Biomed Mater Res 25(11):1325–1337

    Article  CAS  PubMed  Google Scholar 

  • Jawed A, Saxena V, Pandey LM (2020) Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. J Water Process Eng 33:101009

    Article  Google Scholar 

  • Jin R, Yuan J (2011) Advances in Biomimetics. InTech, Rijeka

    Google Scholar 

  • Johnson DL, Martin LL (2005) Controlling protein orientation at interfaces using histidine tags: an alternative to Ni/NTA. J Am Chem Soc 127(7):2018–2019

    Article  CAS  PubMed  Google Scholar 

  • Jones KL, O’Melia CR (2000) Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength. J Membr Sci 165(1):31–46

    Article  CAS  Google Scholar 

  • Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Hölzemann G, Goodman SL, Kessler H (2000) Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem 1(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Karlsson M, Ekeroth J, Elwing H, Carlsson U (2005) Reduction of irreversible protein adsorption on solid surfaces by protein engineering for increased stability. J Biol Chem 280(27):25558–25564

    Article  CAS  PubMed  Google Scholar 

  • Karyakin AA, Presnova GV, Rubtsova MY, Egorov AM (2000) Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal Chem 72(16):3805–3811

    Article  CAS  PubMed  Google Scholar 

  • Kasemo B (2002) Biological surface science. Surf Sci 500(1):656–677

    Article  CAS  Google Scholar 

  • Kaur R, Hasan A, Iqbal N, Alam S, Saini MK, Raza SK (2014) Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: a review. J Sep Sci 37(14):1805–1825

    Article  CAS  PubMed  Google Scholar 

  • Keselowsky BG, Collard DM, Garcı́a AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25(28):5947–5954

    Article  CAS  PubMed  Google Scholar 

  • Kirby BJ, Wheeler AR, Zare RN, Fruetel JA, Shepodd TJ (2003) Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip 3(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Kornberg L, Earp HS, Parsons J, Schaller M, Juliano R (1992) Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 267(33):23439–23442

    Article  CAS  PubMed  Google Scholar 

  • Lee BY, Timpson P, Horvath LG, Daly RJ (2015) FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 146:132–149

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Jung JH, Kim DS, Lim G, Cho D-W (2009) Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectron Eng 86(4):1451–1454

    Article  CAS  Google Scholar 

  • Lee J-W, Serna F, Nickels J, Schmidt CE (2006a) Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7(6):1692–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ (2006b) Effect of biomaterial surface properties on fibronectin–α 5 β 1 integrin interaction and cellular attachment. Biomaterials 27(9):1907–1916

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang J, Zhou X, Lu G, Yin Z, Li G, Wu T, Boey F, Venkatraman SS, Zhang H (2009) Aminosilane micropatterns on hydroxyl-terminated substrates: fabrication and applications. Langmuir 26(8):5603–5609

    Article  CAS  Google Scholar 

  • Li J, Ding M, Fu Q, Tan H, Xie X, Zhong Y (2008) A novel strategy to graft RGD peptide on biomaterials surfaces for endothelization of small-diamater vascular grafts and tissue engineering blood vessel. J Mater Sci Mater Med 19(7):2595–2603

    Article  CAS  PubMed  Google Scholar 

  • Li J-R, Garno JC (2009) Nanostructures of octadecyltrisiloxane self-assembled monolayers produced on Au (111) using particle lithography. ACS Appl Mater Interfaces 1(4):969–976

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J, Poh Y-C, Tang K, Wang N, Huang B (2012) Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 11(8):734–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci 88(3):1044–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5(1):66–78

    Article  CAS  Google Scholar 

  • Luo F, Hong G, Matsui H, Endo K, Wan Q, Sasaki K (2018) Initial osteoblast adhesion and subsequent differentiation on zirconia surfaces are regulated by integrins and heparin-sensitive molecule. Int J Nanomedicine 13:7657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüthen F, Lange R, Becker P, Rychly J, Beck U, Nebe JB (2005) The influence of surface roughness of titanium on β1-and β3-integrin adhesion and the organization of fibronectin in human osteoblastic cells. Biomaterials 26(15):2423–2440

    Article  PubMed  CAS  Google Scholar 

  • Malmsten M (1995) Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf B: Biointerfaces 3(5):297–308

    Article  CAS  Google Scholar 

  • Massia SP, Hubbell JA (1990) Covalently Attached GRGD on Polymer Surfaces Promotes Biospecific Adhesion of Mammalian Cellsa. Annals of the New York Academy of Sciences 589(1):261–270

    Article  CAS  PubMed  Google Scholar 

  • Massia SP, Hubbell JA (1991) An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114(5):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Kondo A, Makino K, Akutsu T (1989) Development of a novel artificial matrix with cell adhesion peptides for cell culture and artificial and hybrid organs. ASAIO J 35(3):677–678

    CAS  Google Scholar 

  • McClelland J, Scholten R, Palm E, Celotta R (1993) Laser-focused atomic deposition. Science. NEW YORK THEN WASHINGTON 262:877–877

    Article  CAS  PubMed  Google Scholar 

  • Migliorini E, Weidenhaupt M, Picart C (2018) Practical guide to characterize biomolecule adsorption on solid surfaces. Biointerphases 13(6):06D303

    Article  PubMed  CAS  Google Scholar 

  • Mulheran P, Pellenc D, Bennett R, Green R, Sperrin M (2008) Mechanisms and dynamics of protein clustering on a solid surface. Phys Rev Lett 100(6):068102

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5):10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niepel MS, Fuhrmann B, Leipner HS, Groth T (2013) Nanoscaled surface patterns influence adhesion and growth of human dermal fibroblasts. Langmuir 29(43):13278–13290

    Article  CAS  PubMed  Google Scholar 

  • Nir S, Zanuy D, Zada T, Agazani O, Aleman C, Shalev DE, Reches M (2019) Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. Nanoscale 11(18):8752–8759

    Article  CAS  PubMed  Google Scholar 

  • O'brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620

    Article  CAS  Google Scholar 

  • Pandey LM, Pattanayek SK (2011) Hybrid surface from self-assembled layer and its effect on protein adsorption. Appl Surf Sci 257(10):4731–4737

    Article  CAS  Google Scholar 

  • Pandey LM, Pattanayek SK (2013a) Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces. Appl Surf Sci 264:832–837

    Article  CAS  Google Scholar 

  • Pandey LM, Pattanayek SK (2013b) Relation between the wetting effect and the adsorbed amount of water-soluble polymers or proteins at various interfaces. J Chem Eng Data 58(12):3440–3446

    Article  CAS  Google Scholar 

  • Pandey LM, Pattanayek SK, Delabouglise D (2013) Properties of adsorbed bovine serum albumin and fibrinogen on self-assembled monolayers. J Phys Chem C 117(12):6151–6160

    Article  CAS  Google Scholar 

  • Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838(1):43–55

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ, Wang Y-l (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellenc D, Bennett R, Green R, Sperrin M, Mulheran P (2008) New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study. Langmuir 24(17):9648–9655

    Article  CAS  PubMed  Google Scholar 

  • Perlin L, MacNeil S, Rimmer S (2008) Production and performance of biomaterials containing RGD peptides. Soft Matter 4(12):2331–2349

    Article  CAS  Google Scholar 

  • Phillips HM, Sauerbrey RA (1993) Excimer-laser-produced nanostructures in polymers. Opt Eng 32(10):2424–2436

    Article  CAS  Google Scholar 

  • Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309(5963):30

    Article  CAS  PubMed  Google Scholar 

  • Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275(29):21785–21788

    Article  CAS  PubMed  Google Scholar 

  • Polte TR, Hanks SK (1995) Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc Natl Acad Sci U S A 92(23):10678–10682. https://doi.org/10.1073/pnas.92.23.10678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polte TR, Hanks SK (1997) Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130Cas) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation: requirements for Src kinase activity and FAK proline-rich motifs. J Biol Chem 272(9):5501–5509. https://doi.org/10.1074/jbc.272.9.5501

    Article  CAS  PubMed  Google Scholar 

  • Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci 162(1–2):87–106

    Article  CAS  Google Scholar 

  • Ranieri JP, Bellamkonda R, Bekos EJ, Gardella JA, Mathieu HJ, Ruiz L, Aebischer P (1994) Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int J Dev Neurosci 12(8):725–735

    Article  CAS  PubMed  Google Scholar 

  • Ranieri JP, Bellamkonda R, Bekos EJ, Vargo TG, Gardella JA, Aebischer P (1995) Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II. J Biomed Mater Res 29(6):779–785

    Article  CAS  PubMed  Google Scholar 

  • Rault I, Frei V, Herbage D, Abdul-Malak N, Huc A (1996) Evaluation of different chemical methods for cros-linking collagen gel, films and sponges. J Mater Sci Mater Med 7(4):215–221

    Article  CAS  Google Scholar 

  • Robbie K, Brett M (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465

    Article  CAS  Google Scholar 

  • Rosales-Leal J, Rodríguez-Valverde M, Mazzaglia G, Ramon-Torregrosa P, Diaz-Rodriguez L, Garcia-Martinez O, Vallecillo-Capilla M, Ruiz C, Cabrerizo-Vilchez M (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp 365(1):222–229

    Article  CAS  Google Scholar 

  • Ruggiero F, Comte J, Cabañas C, Garrone R (1996) Structural requirements for alpha 1 beta 1 and alpha 2 beta 1 integrin mediated cell adhesion to collagen V. J Cell Sci 109(7):1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12(1):697–715

    Article  CAS  PubMed  Google Scholar 

  • Salber J, Gräter S, Harwardt M, Hofmann M, Klee D, Dujic J, Jinghuan H, Ding J, Kippenberger S, Bernd A (2007) Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human‐skin keratinocytes and fibroblasts on deformable substrates. Small 3(6):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Santiago LY, Nowak RW, Rubin JP, Marra KG (2006) Peptide-surface modification of poly (caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27(15):2962–2969

    Article  CAS  PubMed  Google Scholar 

  • Santos PA, Rocha CS, Baptista MS (2014) Adhesion and proliferation of HeLa and fibroblast cells on chemically-modified gold surfaces. Colloids Surf B: Biointerfaces 123:429–438

    Article  CAS  PubMed  Google Scholar 

  • Saxena V, Hasan A, Pandey LM (2018) Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater Technol 33(2):79–92. https://doi.org/10.1080/10667857.2017.1377972

    Article  CAS  Google Scholar 

  • Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT (1992) pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci 89(11):5192–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaepfer DD, Hanks SK, Hunter T, Pvd G (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372(6508):786–791. https://doi.org/10.1038/372786a0

    Article  CAS  PubMed  Google Scholar 

  • Schlaepfer DD, Jones KC, Hunter T (1998) Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 18(5):2571. https://doi.org/10.1128/MCB.18.5.2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz R, Brings R, Geiger R (2005) Protein adsorption on solid–liquid interfaces monitored by laser-ellipsometry. Appl Surf Sci 252(1):154–157

    Article  CAS  Google Scholar 

  • Shaw D, Shoichet MS (2003) Toward spinal cord injury repair strategies: peptide surface modification of expanded poly (tetrafluoroethylene) fibers for guided neurite outgrowth in vitro. J Craniofac Surg 14(3):308–316

    Article  PubMed  Google Scholar 

  • Shen Y, Gao M, Ma Y, Yu H, Cui F-z, Gregersen H, Yu Q, Wang G, Liu X (2015) Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B: Biointerfaces 126:188–197

    Article  CAS  PubMed  Google Scholar 

  • Sidouni F-Z, Nurdin N, Chabrecek P, Lohmann D, Vogt J, Xanthopoulos N, Mathieu H, Francois P, Vaudaux P, Descouts P (2001) Surface properties of a specifically modified high-grade medical polyurethane. Surf Sci 491(3):355–369

    Article  CAS  Google Scholar 

  • Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85(8):4141–4149

    Article  CAS  PubMed  Google Scholar 

  • Sota H, Hasegawa Y, Iwakura M (1998) Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal Chem 70(10):2019–2024

    Article  CAS  PubMed  Google Scholar 

  • Sreejalekshmi KG, Nair PD (2011) Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications—altering chemistry for enhanced biological response. J Biomed Mater Res A 96(2):477–491

    Article  PubMed  CAS  Google Scholar 

  • Srichai MB, Zent R (2010) Integrin structure and function. In: Cell-extracellular matrix interactions in cancer. Springer, pp 19–41

    Google Scholar 

  • Streblow DN, Vomaske J, Smith P, Melnychuk R, Hall L, Pancheva D, Smit M, Casarosa P, Schlaepfer DD, Nelson JA (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278(50):50456–50465. https://doi.org/10.1074/jbc.M307936200

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Önneby S (2006) Facile polyester surface functionalization via hydrolysis and cell‐recognizing peptide attachment. Polym Int 55(11):1336–1340

    Article  CAS  Google Scholar 

  • Sun H, Wirsén A, Albertsson A-C (2004) Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone. Biomacromolecules 5(6):2275–2280

    Article  CAS  PubMed  Google Scholar 

  • Syedain ZH, Bjork J, Sando L, Tranquillo RT (2009) Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue. Biomaterials 30(35):6695–6701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro K-i, Monji A, Yoshida I, Hayashi Y, Matsuda K, Tashiro N, Mitsuyama Y (1999) An IKLLI-containing peptide derived from the laminin α1 chain mediating heparin-binding, cell adhesion, neurite outgrowth and proliferation, represents a binding site for integrin α3β1 and heparan sulphate proteoglycan. Biochem J 340(1):119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichroeb J, Forrest J, Jones L, Chan J, Dalton K (2008) Quartz crystal microbalance study of protein adsorption kinetics on poly (2-hydroxyethyl methacrylate). J Colloid Interface Sci 325(1):157–164

    Article  CAS  PubMed  Google Scholar 

  • Tie Y, Calonder C, Van Tassel PR (2003) Protein adsorption: kinetics and history dependence. J Colloid Interface Sci 268(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Toffoli A, Parisi L, Bianchi MG, Lumetti S, Bussolati O, Macaluso GM (2020) Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. Mater Sci Eng C 107:110250

    Article  CAS  Google Scholar 

  • Tong YW, Shoichet MS (1998) Peptide surface modification of poly (tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons. J Biomed Mater Res 42(1):85–95

    Article  CAS  PubMed  Google Scholar 

  • Tsang VC, Greene RM, Pilcher JB (1995) Optimization of the covalent conjugating procedure (NaIO4) of horseradish peroxidase to antibodies for use in enzyme-linked immunosorbent assay. J Immunoass Immunochem 16(4):395–418

    Article  CAS  Google Scholar 

  • Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B Biomed Sci Appl 722(1):11–31

    Article  CAS  PubMed  Google Scholar 

  • Vagaská B, Bacakova L, Filová E, Balík K (2010) Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res 59(3):309

    Article  PubMed  Google Scholar 

  • Van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305(3):285–298

    Article  PubMed  CAS  Google Scholar 

  • Vogler EA (2012) Protein adsorption in three dimensions. Biomaterials 33(5):1201–1237

    Article  CAS  PubMed  Google Scholar 

  • Vörös J (2004) The density and refractive index of adsorbing protein layers. Biophys J 87(1):553–561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasilewska M, Adamczyk Z, Pomorska A, Nattich-Rak M, Sadowska M (2019) Human serum albumin adsorption kinetics on silica: influence of protein solution stability. Langmuir 35(7):2639–2648

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Becherer T, Angioletti‐Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R (2014) Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed 53(31):8004–8031

    Article  CAS  Google Scholar 

  • Wen Y, Pei H, Wan Y, Su Y, Huang Q, Song S, Fan C (2011) DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Anal Chem 83(19):7418–7423

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR (2011) Differential response of staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 32(4):951–960

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Kim E, Zhao X-M, Rogers JA (1996) Complex optical surfaces formed by replica molding against elastomeric masters. Science 273(5273):347

    Article  CAS  PubMed  Google Scholar 

  • Yang JT, Bader BL, Kreidberg JA, Ullman-Culleré M, Trevithick JE, Hynes RO (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215(2):264–277

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hollister S (2009) Comparison of bone marrow stromal cell behaviors on poly (caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J Biomater Sci Polym Ed 20(14):1975–1993

    Article  CAS  PubMed  Google Scholar 

  • Ziółkowski R, Kaczmarek A, Kośnik I, Malinowska E (2020) Reduced nonspecific protein adsorption by application of diethyldithiocarbamate in receptor layer of diphtheria toxoid electrochemical immunosensor. Bioelectrochemistry 132:107415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit M. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, A., Pandey, L.M. (2021). Implications of the Nanoscopic Surface Modification on the Protein Adsorption and Cell Adhesion. In: Sarma, H., Joshi, S.J., Prasad, R., Jampilek, J. (eds) Biobased Nanotechnology for Green Applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-61985-5_16

Download citation

Publish with us

Policies and ethics