Skip to main content
Log in

Proteomic Approach for the Elucidation of Biological Defects in Autism

  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Proteomic-based approaches, which examine expressed proteins in tissues or cells, have great potential in the elucidation of biological defects in heterogeneous neurodevelopmental disorders such as autism. In this approach, tissue or cellular proteins from control and affected subjects are separated on two-dimensional (2-D) polyacrylamide gel electrophoresis, and those proteins that show marked changes in the concentration between control and affected subjects are identified by mass spectroscopy. This method has been successfully applied in the elucidation of the molecular biological defect in classic late-infantile neuronal ceroid lipofuscinosis (Sleat et al., 1997). Unlike the classical methods of genome-wide screening for chromosomal localization followed by positional cloning, the proteomic approach requires limited number of tissue samples and the study can be completed in a relatively short time. Currently, these methods are available for relatively abundant proteins and generally are not applicable for hydrophobic proteins because 2-D gel electrophoresis is not very effective in the analysis of hydrophobic proteins. The genetic defect results in either total loss of proteins or changes in molecular weight and/or isoelectric point will be detectable by the proteomic method. Because autism is a neurogenetic disorder, brain is the tissue of choice for proteomic study. For an oligogenic disorder such as autism, at least some of the aberrant (genes) proteins may be identified by this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andersen, J. S., & Mann, M. (2000). Functional genomics by mass spectroscopy. FEBS Letters, 480, 25–31.

    PubMed  Google Scholar 

  • Anderson, L., & Seihamer, J. A. (1997). A comparison of selected mRNA and protein abundance in human liver. Electrophoresis, 18, 533–537.

    PubMed  Google Scholar 

  • Ashley-Koch, A., Wolpert, C. M., Menold, M. M., Zaeem, L., Basu, S., Donnelly, S. L., Ravan, S. A., Powel, C. M., Qumsiyeh, M. B., Aylsworth, A. S., Vance, J. M., Gilbert, J. R., Wright, H. H., Abramson, R. K., Delong, G. R., Cuccaro, M. L., & Pericak-Vance, M. A. (1999). Genetic studies of autistic disorder and chromosome 7. Genomics, 61, 227–236.

    PubMed  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, L., Bolton, P., Simonoff, E., Yuzda, E., & Rutter, M. (1995) Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    PubMed  Google Scholar 

  • Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J-C, Blackstock, W., Pappin, D. J., & Selby, P. J. (2000). Proteomics: New perspectives, new biomedical opportunities. Lancet, 356, 1749–1756.

    PubMed  Google Scholar 

  • Barrett, S., Beck, J. C., Bemier, R., et al. (1999). Collaborative linkage study of autism (CLSA). An autosomal genome screen for autism. American Journal of Medical Genetics, 88, 609–615.

    PubMed  Google Scholar 

  • Bass, M. P., Menold, M. M., Wolpert, C. M., Donnelly, S. L., Ravan, S. A., Hauser, E. R., Maddox, L. O., Vance, J. M., Abramson, R. K., Wright, H. H., Gilbert, J. R., Cuccaro, M. L., DeLong, G. R., & Pericak-Vance, M. A. (2000). Genetic studies in autistic disorder and chromosome 15. Neurogenetics, 2, 219–226.

    PubMed  Google Scholar 

  • Buxbaum, J. D., Silverman, J. M., Smith, C. J., Kilifarski, M., Reichert, J., Hollander, E., Lawlor, B. A., Fitzgerald, M., Greenberg, D. A., & Davis, K. L. (2001). Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. American Journal of Human Genetics, 68, 1514–1520.

    PubMed  Google Scholar 

  • Chambers, G., Lawrie, L., Cash, P., & Murray, G. I. (2000). Proteomics: A new approach to the study of disease. Journal of Pathology, 192, 280–288.

    PubMed  Google Scholar 

  • Cook, E. H., Courchesne, R. Y., Cox, N. J., Lord, C., Gonen, D., Guter, S. J., Lincoln, A., Nix, K., Haas, R., Leventhal, B. L., & Courchesne, E. (1998). Linkage-disequilibrium mapping of autistic disorder, with 15q11–13 markers. American Journal of Human Genetics, 62, 1077-1083.

    PubMed  Google Scholar 

  • Fountoulakis, M., Schuller, E., Hardmeier, R., Berndt, P., & Lubec, G. (1999). Rat brain proteins: Two-dimensional protein database and variations in the expression level. Electrophoresis, 20, 3572–3579.

    PubMed  Google Scholar 

  • International Molecular Genetic Study of Autism Consortium (IMGSAC). (1998). A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Human Molecular Genetics, 7, 571–578.

    Google Scholar 

  • Junaid, M. A., Sklower-Brooks, S., Wisniewski, K. E., & Pullarkat, R. K. (1999). A novel assay for lysosomal pepstatin-insensitive proteinase and its application for the diagnosis of late-infantile neuronal ceroid lipofuscinosis. Clinica Chimica Acta, 281, 169–176.

    Google Scholar 

  • Langen, H., Berndt, P., Roder, D., Cairns, N., Lubec, G., & Fountoulakis, M. (1999). Two-dimensional map of human brain proteins. Electrophoresis, 20, 907–916.

    PubMed  Google Scholar 

  • Maestrini, E., Paul, A., Monaco, A. P., & Bailey, A. (2000). Identifying autism susceptibility genes. Neuron, 28, 19–24.

    PubMed  Google Scholar 

  • Philippe, A., Martinez, M., Bataille-Guillot, M., Gillberg, C., Rastam, M., Sponheim, E., Coleman, M., Zappella, M., Aschauer, H., van Malldergerme, L., Penet, C., Feingold, J., Brice, A., & Leboyer, M. (1999). Genome-wide scan for autism susceptibility genes. Human Molecular Genetics, 8, 805–812.

    PubMed  Google Scholar 

  • Pickles, A., Bolton, P., Macdonald, H., Bailey, A., Le Couteur, A., Sim, C-H., & Rutter, M. (1995). Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism.American Journal of Human Genetics, 57, 717–726.

    PubMed  Google Scholar 

  • Povey, A., Burley, M. W., Attwood, J., Benham, F., Hund, D., Jeremiah, S. J., Franklin, S., Gillett, G., Malas, S., Robson, E. B., Tippett, P., Edwards, J. H., Kwiatkowski, D. J., Super, M., Mueller, R., Fryer, A., Clarke, A., Webb, D., & Osborne, J. (1994). Two loci for tuberous sclerosis: One on 9q34 and one on 16p13. Annals of Human Genetics, 58, 107–127.

    PubMed  Google Scholar 

  • Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., Kalaydjieva, L., McCague, P., Dimiceli, S., Pitts, T., Nguyen, L., Yang, J., Harper, C., Thorpe, D., Vermeer, S., Young, H., Hebert, J., Lin, A., Ferguson, J., Chiotti, C., Wiese-Slater, S., Rogers, T., Salmon, B., Nicholas, P., Petersen, P. B., Pingree, C., McMahon, W., Wong, D. L., Cavalli-Sforza, L. L., Kraemer, H. C., & Myers, R. M. (1999). A genomic screen for autism: Evidence for a multilocus etiology. American Journal of Human Genetics, 65, 493–507.

    Article  PubMed  Google Scholar 

  • Santoni, V., Molloy, M., & Rabilloud, T. (2000). Membrane proteins and proteomics: Un amour impossible? Electrophoresis, 21, 1054–1070.

    PubMed  Google Scholar 

  • Sleat, D. E., Donnelly, R. J., Lackland, H., Liu, C-G., Sohar, I., Pullarkat, R. K., & Lobel, P. (1997). Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science, 277, 1802–1804.

    PubMed  Google Scholar 

  • Suzuki, Y., Sakuraba, H., & Dshima, A. (1995). ?-galactosidase deficiency (?-galactosidosis); GM1 gangliosidosis and Morquio B disease. In The metabolic and molecular bases of inherited disease, (vol. II) (pp. 2785–2873) Scriver, C. R. et al. (Eds.), New York: McGraw-Hill.

    Google Scholar 

  • Szatmari, P., Jones, M. B., Zwaigenbaum, L., & MacLean, J. E. (1998). Genetics of autism: Overview and new directions. Journal of Autism and Developmental Disorders, 28, 351–368.

    PubMed  Google Scholar 

  • Tsuji, T., Shimohama, S., Kamiya, S., Sazuka, T., & Ohara, O. (1999). Analysis of brain proteins in Alzheimer's disease using high-resolution two-dimensional gel electrophoresis. Journal of Neurological Science, 166, 100–106.

    Google Scholar 

  • Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1996). Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it.Biotechnology and Genetics Engineering Review, 13, 19–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junaid, M.A., Pullarkat, R.K. Proteomic Approach for the Elucidation of Biological Defects in Autism. J Autism Dev Disord 31, 557–560 (2001). https://doi.org/10.1023/A:1013242910574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013242910574

Navigation