Skip to main content
Log in

Fulvic Acid-Sulfide Ion Competition for Mercury Ion Binding in the Florida Everglades

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculatedspecies distributions are used to estimate a mercury-fulvicacid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC,modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present inEverglades' surface water, mercury-sulfide complexes shoulddominate dissolved inorganic mercury solution speciation. Inthe absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominateEverglades' dissolved inorganic mercury speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G. R.: 1995, Environmental Science and Technology 26, 2435.

    Google Scholar 

  • Allard, B. and Arsenie, I.: 1991, Water, Air, and Soil Pollut. 56, 457.

    Google Scholar 

  • Armstrong, D. E., Hurley, J. P., Swackhamer, D. L. and Shafer, M. M.: 1987, ‘Cycles of Nutrient Elements, Hydrophobic Organic Compounds, and Metals in Crystal Lake’, in R. A. Hites and S. J. Eisenreich (eds.), Sources and Fates of Aquatic Pollutants, American Chemical Society, Washington, pp. 491–518.

  • Bloom, N. S., Watra, C. J. and Hurley, J. P.: 1991, Water, Air, and Soil Pollut. 56, 477.

    Google Scholar 

  • Charlton, S. R., Macklin, C. L. and Parkhurst, D. L.: 1997, ‘PHREEQCI-A Graphical User Interface for the Geochemical Computer Program PHREEQC’, Water-Resources Investigations Report, pp. 1–9.

  • Cleckner, L. B., Garrison, P. J., Hurley, J. P., Olson, M. L. and Krabbenhoft, D. P.: 1998, Biogeochemistry 40, 347.

    Google Scholar 

  • Cotlove, E., Trantham, H. V. and Bowman, R. L.: 1958, Journal of Laboratory and Clinical Medicine 51, 461.

    Google Scholar 

  • Driscoll, C. T., Blette, V., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1995, Water, Air, and Soil Pollut. 80, 499.

    Google Scholar 

  • Driscoll, C. T., Holsapple, J., Schofield, C. L. and Munson, R.: 1998, Biogeochemistry 40, 137.

    Google Scholar 

  • Driscoll, C. T., Yan, C., Schofield, C. L., Munson, R. and Holsapple, J.: 1994, Environmental Science and Technology 28, 136A.

    Google Scholar 

  • Fishman, M. J. and Freidman, L. C.: 1985, ‘Methods for determination of inorganic substances in water and fluvial sediments’, U.S. Geological Survey Open-File Report, p. 709.

  • Garbarino, J. R. and Taylor, H. E.: 1980, Applied Spectroscopy 34, 584.

    Google Scholar 

  • Gilmour, C. C., Riedel, G. S., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A. and Stordal, M. C.: 1998, Biogeochemistry 40, 327.

    Google Scholar 

  • Goyer, R. A., Vasken Aposhian, H., Arab, L., Bellinger, D. C., Burbacher, T.M., Burke, T. M., Burke, T. A., J acobson, J. L., Knobloch, L. M., Ryan, L. M. and Stern, A.: 2000, Toxicological Effects of Methylmercury, National Academy Press, Washington, DC, 290 pp.

    Google Scholar 

  • Hintelmann, H., Welbourn, P. M. and Evans, R. D.: 1995, Water, Air, and Soil Pollut. 80, 1031.

    Google Scholar 

  • Hintelmann, H., Welbourn, P. M. and Evans, R. D.: 1997, Environmental Science and Technology 31, 489.

    Google Scholar 

  • Hoch, A. R., Reddy, M. M. and Aiken, G. R.: 2000, Geochimica et Cosmochimica Acta 64, 61.

    Google Scholar 

  • Hoffman, M. R.: 1977, Environmental Science and Technology 11, 61.

    Google Scholar 

  • Hurley, J. P., Benoit, J. M., Babiarz, C. L., Schafer, M. M., Andren, A.W., Sullivan, J. R., Hammond, R. and Webb, D. A.: 1995, Environmental Science and Technology 29, 1867.

    Google Scholar 

  • Hurley, J. P., Krabbenhoft, D. P., Babiarz, C. L. and Andren, A. W.: 1994, ‘Cycling of Mercury Across the Sediment-Water Interface in Seepage Lakes’, in L. A. Baker, (ed.), Environmental Chemistry of Lakes and Reservoirs, ACS Advances in Chemistry Series No. 237, American Chemical Society, Washington, pp. 425–449.

    Google Scholar 

  • Hurley, J. P., Krabbenhoft, D. P., Cleckner, L. B., Olson, M. L., Aiken, G. R. and Rawlik Jr., P. S.: 1998, Biogeochemistry 40, 293.

    Google Scholar 

  • Kerndorff, H. and Schnitzer, M.: 1980, Geochimica et Cosmochimica Acta 44, 1701.

    Google Scholar 

  • Koch, M. S. and Reddy, K. R.: 1992, Soil Science Society of America Journal 56, 1492.

    Google Scholar 

  • Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P. and Andren, A. W.: 1995, Water, Air, and Soil Pollut. 80, 425.

    Google Scholar 

  • Krabbenhoft, D. P., Hurley, J. P., Olson, M. L. and Cleckner, L. B.: 1998, Biogeochemistry 40, 311.

    Google Scholar 

  • Lawson, N. M. and Mason, R. P.: 1998, Biogeochemistry 40, 235.

    Google Scholar 

  • Lovgren, L. and Sjoberg, S.: 1989, Water Research 23, 327.

    Google Scholar 

  • Mantoura, R. F. C., Dickson, A. and Riley, J. P.: 1978, Estuarine and Coastal Marine Science 6, 387.

    Google Scholar 

  • Marinsky, J. A., Mathuthu, A., Ephraim, J. H. and Reddy, M. M.: 1999, Radiochimica Acta 84, 205.

    Google Scholar 

  • Millero, F. J., LeFerriere, A., Fernandez, M., Hubinger, S. and Hershey, J. P.: 1989, Environmental Science and Technology 23, 209.

    Google Scholar 

  • Parkhurst, D. L.: 1995, ‘Users guide to PHREEQC — A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculations’, U.S. Geological Survey Open-File Report, pp. 1–43.

  • Perdue, E. M. and Lytle, C. R.: 1983, Environmental Science and Technology 17, 654.

    Google Scholar 

  • Ravichandran, M., Aiken, G. R., Reddy, M. M. and Ryan, J. N.: 1998, Environmental Science and Technology 32, 3305.

    Google Scholar 

  • Ravichandran, M., Aiken, G. R., Ryan, J. N. and Reddy, M. M.: 1999, Environmental Science and Technology 33, 1418.

    Google Scholar 

  • Reddy, M. M., Schuster, P. F. and Harte, J. J.: 1989, ‘Summary of Data from Onsite and Laboratory Analyses of Precipitation Runoff from Carbonate-Stone Surfaces, National Acid Precipitation Assessment Program, June 1984 to November 1987’, U.S. Geological Survey Open-File Report, pp. 1–19.

  • Scherbatskoy, T., Shanley, J. B. and Keeler, G. J.: 1998, Water, Air, and Soil Pollut. 105, 427.

    Google Scholar 

  • Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D. and Webb, D.: 1997, Chemical Geology 136, 71.

    Google Scholar 

  • Shanley, J. B., Donlon, A. F., Scherbatskoy, T. and Keeler, G. J.: 1999, Water Science and Application 1, 277.

    Google Scholar 

  • Tipping, E.: 1994, Computers and Geosciences 20, 973.

    Google Scholar 

  • Wood, W. W.: 1976, ‘Guidelines for Collection and Field Analysis of Ground-Water Samples for Selected Unstable Constituents’, in W. W. Wood, (ed.), Techniques of Water-Resources Investigations of the United States Geological Survey, Chapter D2, Book 1, Techniques of Water-Resources Investigations of the U.S. Geological Survey, 76–241, pp. 1–24.

  • Yin, Y., Allen, H. E., Huang, CP. and Sanders, P. F.: 1997, Analytica Chimica Acta 341, 73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.M., Aiken, G.R. Fulvic Acid-Sulfide Ion Competition for Mercury Ion Binding in the Florida Everglades. Water, Air, & Soil Pollution 132, 89–104 (2001). https://doi.org/10.1023/A:1012073503678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012073503678

Navigation