Skip to main content

Advertisement

Log in

Biogeochemical controls on mercury methylation in the Allequash Creek wetland

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babiarz CL, Hurley JP, Benoit JM et al (1998) Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry 41:237–257. doi:10.1023/A:1005940630948

    Article  CAS  Google Scholar 

  • Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271

    CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A et al (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Cai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements. Amer Chemical Soc, Washington, pp 262–297

    Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP (2001) Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Appl Environ Microbiol 67:51–58. doi:10.1128/AEM.67.1.51-58.2001

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999a) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957. doi:10.1021/es9808200

    Article  CAS  Google Scholar 

  • Benoit JM, Mason RP, Gilmour CC (1999b) Estimation of mercury-sulfide speciation in sediment pore waters using octanol—water partitioning and implications for availability to methylating bacteria. Environ Toxicol Chem 18:2138–2141. doi:10.1897/1551-5028(1999)018<2138:EOMSSI>2.3.CO;2

    CAS  Google Scholar 

  • Bloom N (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017. doi:10.1139/f92-113

    Article  CAS  Google Scholar 

  • Blum JD, Bergquist BA (2007) Reporting of variations in the natural isotopic composition of mercury. Anal Bioanal Chem 388:353–359. doi:10.1007/s00216-007-1236-9

    Article  CAS  Google Scholar 

  • Bouchet S, Bridou R, Tessier E et al (2011) An experimental approach to investigate mercury species transformations under redox oscillations in coastal sediments. Mar Environ Res 71:1–9. doi:10.1016/j.marenvres.2010.09.001

    Article  CAS  Google Scholar 

  • Bridou R, Monperrus M, Gonzalez PR et al (2011) Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ Toxicol Chem 30:337–344. doi:10.1002/etc.395

    Article  CAS  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Creswell JE, Kerr SC, Meyer MH et al (2008) Factors controlling temporal and spatial distribution of total mercury and methylmercury in hyporheic sediments of the Allequash Creek wetland, northern Wisconsin. J Geophys Res Biogeosciences. doi:10.1029/2008JG000742

    Google Scholar 

  • Deonarine A, Hsu-Kim H (2009) Precipitation of mercuric sulfide nanoparticles in NOM-containing water: implications for the natural environment. Environ Sci Technol 43:2368–2373. doi:10.1021/es803130h

    Article  CAS  Google Scholar 

  • Driscoll C, Blette V, Yan C et al (1995) The role of dissolved organic-carbon in the chemistry and bioavailability of mercury in remote Adirondack Lakes. Water Air Soil Pollut 80:499–508. doi:10.1007/BF01189700

    Article  CAS  Google Scholar 

  • Driscoll CT, Holsapple J, Schofield CL, Munson R (1998) The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA. Biogeochemistry 40:137–146. doi:10.1023/A:1005989229089

    Article  CAS  Google Scholar 

  • Drott A, Lambertsson L, Björn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41:2270–2276. doi:10.1021/es061724z

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464. doi:10.1128/AEM.72.1.457-464.2006

    Article  CAS  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 8:205–222

    Article  CAS  Google Scholar 

  • Gerringa LJA, Herman PMJ, Poortvliet TCW (1995) Comparison of the linear van den Berg/Ružić transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Mar Chem 48:131–142. doi:10.1016/0304-4203(94)00041-B

    Article  CAS  Google Scholar 

  • Gilmour C, Riedel GS, Ederington MC et al (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40:327–345. doi:10.1023/A:1005972708616

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287. doi:10.1021/es00035a029

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL et al (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820. doi:10.1021/es403075t

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Env Sci Technol 46:2715–2723. doi:10.1021/es203658f

    Article  CAS  Google Scholar 

  • Hamelin S, Amyot M, Barkay T et al (2011) Methanogens: principal methylators of mercury in Lake Periphyton. Environ Sci Technol 45:7693–7700. doi:10.1021/es2010072

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ Sci Technol 38:1487–1495. doi:10.1021/es034528q

    Article  CAS  Google Scholar 

  • Heyes A, Mason RP, Kim E-H, Sunderland E (2006) Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Mar Chem 102:134–147. doi:10.1016/j.marchem.2005.09.018

    Article  CAS  Google Scholar 

  • Hintelmann H, Evans RD (1997) Application of stable isotopes in environmental tracer studies—measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresenius J Anal Chem 358:378–385. doi:10.1007/s002160050433

    Article  CAS  Google Scholar 

  • Hintelmann H, Evans RD, Villeneuve JY (1995) Measurement of mercury methylation in sediments by using enriched stable mercury isotopes combined with methylmercury determination by gas chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom 10:619. doi:10.1039/ja9951000619

    Article  CAS  Google Scholar 

  • Hoffmann SR (2002) Strong binding of copper, zinc, and lead to colloids and natural organic matter in rivers. Ph.D., University of Wisconsin - Madison

  • Horvat M, Bloom NS, Liang L (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples: part 1. Sediments. Anal Chim Acta 281:135–152. doi:10.1016/0003-2670(93)85348-N

    Article  CAS  Google Scholar 

  • Hurley JP, Benoit JM, Babiarz CL et al (1995) Influences of watershed characteristics on mercury levels in Wisconsin rivers. Environ Sci Technol 29:1867–1875. doi:10.1021/es00007a026

    Article  CAS  Google Scholar 

  • Jeong HY, Sun K, Hayes KF (2010) Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS). Environ Sci Technol 44:7476–7483. doi:10.1021/es100808y

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E et al (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921. doi:10.1128/AEM.01602-06

    Article  CAS  Google Scholar 

  • Kerr SC, Shafer MM, Overdier J, Armstrong DE (2008) Hydrologic and biogeochemical controls on trace element export from northern Wisconsin wetlands. Biogeochemistry 89:273–294. doi:10.1007/s10533-008-9219-2

    Article  CAS  Google Scholar 

  • Korthals ET, Winfrey MR (1987) Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake. Appl Environ Microbiol 53:2397–2404

    CAS  Google Scholar 

  • Krabbenhoft D, Benoit J, Babiarz C et al (1995) Mercury cycling in the Allequash Creek watershed, northern Wisconsin. Water Air Soil Pollut 80:425–433. doi:10.1007/BF01189692

    Article  CAS  Google Scholar 

  • Lamborg CH, Tseng CM, Fitzgerald WF et al (2003) Determination of the mercury complexation characteristics of dissolved organic matter in natural waters with “reducible Hg” titrations. Environ Sci Technol 37:3316–3322. doi:10.1021/es0264394

    Article  CAS  Google Scholar 

  • Langer CS, Fitzgerald WF, Visscher PT, Vandal GM (2001) Biogeochemical cycling of methylmercury at Barn Island salt marsh, Stonington, CT, USA. Wetl Ecol Manag 9:295–310. doi:10.1023/A:1011816819369

    Article  CAS  Google Scholar 

  • Liu J, Valsaraj KT, Devai I, DeLaune RD (2008) Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157:432–440. doi:10.1016/j.jhazmat.2008.01.006

    Article  CAS  Google Scholar 

  • Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol Biotechnol 18:75–81. doi:10.1038/sj.jim.2900246

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJ (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757

    CAS  Google Scholar 

  • Lowry CS, Walker JF, Hunt RJ, Anderson MP (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res 43:n/a-n/a. doi: 10.1029/2007WR006145

  • Marvin-DiPasquale M, Agee JL (2003) Microbial mercury cycling in sediments of the San Francisco Bay-Delta. Estuaries 26:1517–1528. doi:10.1007/BF02803660

    Article  CAS  Google Scholar 

  • Mehrotra AS, Horne AJ, Sedlak DL (2003) Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: implications for engineered wetlands. Environ Sci Technol 37:3018–3023. doi:10.1021/es0262838

    Article  CAS  Google Scholar 

  • Mehrotra AS, Sedlak DL (2005) Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environ Sci Technol 39:2564–2570. doi:10.1021/es049096d

    Article  CAS  Google Scholar 

  • Merritt KA, Amirbahman A (2009) Mercury methylation dynamics in estuarine and coastal marine environments—a critical review. Earth-Sci Rev 96:54–66. doi:10.1016/j.earscirev.2009.06.002

    Article  CAS  Google Scholar 

  • Miller CL, Mason RP, Gilmour CC, Heyes A (2007) Influence of dissolved organic matter on the complexation of mercury under sulfidic conditions. Environ Toxicol Chem 26:624–633. doi:10.1897/06-375R.1

    Article  CAS  Google Scholar 

  • Miskimmin B, Rudd J, Kelly C (1992) Influence of dissolved organic-carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can J Fish Aquat Sci 49:17–22. doi:10.1139/f92-002

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Branfireun BA, Kolka RK (2008b) Spatial characteristics of net methylmercury production hot spots in peatlands. Environ Sci Technol 42:1010–1016. doi:10.1021/es0704986

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Branfireun BA, Kolka RK (2008a) Assessing sulfate and carbon controls on net methylmercury production in peatlands: an in situ mesocosm approach. Appl Geochem 23:503–518. doi:10.1016/j.apgeochem.2007.12.020

    Article  CAS  Google Scholar 

  • Morrice JA, Dahm CN, Valett HM et al (2000) Terminal electron accepting processes in the alluvial sediments of a headwater stream. J North Am Benthol Soc 19:593–608. doi:10.2307/1468119

    Article  Google Scholar 

  • Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57:3635–3640. doi:10.1016/0016-7037(93)90145-M

    Article  CAS  Google Scholar 

  • Olson ML, Cleckner LB, Hurley JP et al (1997) Resolution of matrix effects on analysis of total and methyl mercury in aqueous samples from the Florida Everglades. Fresenius J Anal Chem 358:392–396. doi:10.1007/s002160050435

    Article  CAS  Google Scholar 

  • Pak K-R, Bartha R (1998) Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microbiol 64:1013–1017

    CAS  Google Scholar 

  • Pint CD, Hunt RJ, Anderson MP (2003) Flowpath delineation and ground water age, Allequash Basin, Wisconsin. Ground Water 41:895–902. doi:10.1111/j.1745-6584.2003.tb02432.x

    Article  CAS  Google Scholar 

  • Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55:319–331. doi:10.1016/j.chemosphere.2003.11.011

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748. doi:10.2307/2838658

    Article  CAS  Google Scholar 

  • Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126. doi:10.1038/ngeo412

    Article  CAS  Google Scholar 

  • Schecher WD, McAvoy DC (2002) MINEQL+—a software environment for chemical equilibrium modeling. Environmental Research Software, Hallowell, Maine

    Google Scholar 

  • Shafer MM, Overdier JT, Phillips H et al (1999) Trace metal levels and partitioning in Wisconsin rivers. Water Air Soil Pollut 110:273–311. doi:10.1023/A:1005019521097

    Article  Google Scholar 

  • Shanley JB, Alisa Mast M, Campbell DH et al (2008) Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environ Pollut 154:143–154. doi:10.1016/j.envpol.2007.12.031

    Article  CAS  Google Scholar 

  • Skyllberg U (2008) Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: illumination of controversies and implications for MeHg net production. J Geophys Res Biogeosciences. doi:10.1029/2008JG000745

    Google Scholar 

  • Slowey AJ (2010) Rate of formation and dissolution of mercury sulfide nanoparticles: the dual role of natural organic matter. Geochim Cosmochim Acta 74:4693–4708. doi:10.1016/j.gca.2010.05.012

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JW, Kelly CA et al (1996) Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environ Sci Technol 30:2719–2729. doi:10.1021/es950856h

    Article  CAS  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781. doi:10.1021/ac60289a016

    Article  CAS  Google Scholar 

  • Tsui MTK, Finlay JC (2011) Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems. Environ Sci Technol. doi:10.1021/es200332f

    Google Scholar 

  • U.S. Environmental Protection Agency (2001a) Method 1630: methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • U.S. Environmental Protection Agency (2002) Method 1631, revision E: mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry

  • U.S. Environmental Protection Agency (2001b) Appendix to Method 1631 total mercury in tissue, sludge, sediment, and soil by acid digestion and BrCl oxidation

  • Viollier E, Inglett PW, Hunter K et al (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790. doi:10.1016/S0883-2927(99)00097-9

    Article  CAS  Google Scholar 

  • Walker JF, Hunt RJ, Bullen TD et al (2003) Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin. Ground Water 41:883–894. doi:10.1111/j.1745-6584.2003.tb02431.x

    Article  CAS  Google Scholar 

  • Warner KA, Roden EE, Bonzongo J-C (2003) Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions. Environ Sci Technol 37:2159–2165. doi:10.1021/es0262939

    Article  CAS  Google Scholar 

  • Zhang T, Kim B, Levard C et al (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958. doi:10.1021/es203181m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Brice Gu, Krysta Koralesky, Amy Kolpin, and Emily Kara for the field and lab assistance, and the University of Wisconsin – Madison Trout Lake Station for the lab space, vehicle use, and logistical support. This work was funded in part by the Wisconsin Groundwater Research and Monitoring Program (Grants WR09R003 and WR07R008). Joel Creswell was supported in part by an EPA STAR Fellowship (FP-91687801). EPA has not endorsed this publication and the views expressed herein may not reflect the views of the EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel E. Creswell.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 728 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creswell, J.E., Shafer, M.M., Babiarz, C.L. et al. Biogeochemical controls on mercury methylation in the Allequash Creek wetland. Environ Sci Pollut Res 24, 15325–15339 (2017). https://doi.org/10.1007/s11356-017-9094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9094-2

Keywords

Navigation