Skip to main content
Log in

Effects of increased and deregulated expression of cell division genes on the morphology and on antibiotic production of streptomycetes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This paper describes the effects of increased expression of the cell division genes ftsZ, ftsQ, and ssgA on the development of both solid- and liquid-grown mycelium of Streptomyces coelicolor and Streptomyces lividans. Over-expression of ftsZ in S. coelicolor M145 inhibited aerial mycelium formation and blocked sporulation. Such deficient sporulation was also observed for the ftsZ mutant. Over-expression of ftsZ also inhibited morphological differentiation in S. lividans 1326, although aerial mycelium formation was less reduced. Furthermore, antibiotic production was increased in both strains, and in particular the otherwise dormant actinorhodin biosynthesis cluster of S. lividans was activated in liquid- and solid-grown cultures. No significant alterations were observed when the gene dosage of ftsQ was increased. Analysis by transmission electron microscopy of an S. coelicolor strain over-expressing ssgA showed that septum formation had strongly increased in comparison to wild-type S. coelicolor, showing that SsgA clearly influences Streptomyces cell division. The morphology of the hyphae was affected such that irregular septa were produced with a significantly wider diameter, thereby forming spore-like compartments. This suggests that ssgA can induce a process similar to submerged sporulation in Streptomyces strains that otherwise fail to do so. A working model is proposed for the regulation of septum formation and of submerged sporulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beall B & Lutkenhaus J (1991) FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Devel. 5: 447–455

    Google Scholar 

  • Bibb MJ (1996) The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142: 1335–1344

    Google Scholar 

  • Bibb MJ, White J, Ward JM & Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14: 533–45

    Google Scholar 

  • Bierman M, Logan R, Obrien K, Seno ET, Rao EN & Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43–49.

    Google Scholar 

  • Biro S, Bekesi I, Vitalis S & Szabo G (1980) A substance effecting differentiation in Streptomyces griseus. Eur. J. Biochem. 103: 359–363

    Google Scholar 

  • Biro S, Birko Z & van Wezel GP (2000) Transcriptional and Functional analysis of the gene for Factor C, an extracellular signal protein involved in cytodifferentiation of Streptomyces griseus. Antonie van Leeuwenhoek, this issue.

  • Birko Z, Sumegi A, Vinnai A, van Wezel GP, Szeszak F, Vitalis S, Szabo PT, Kele Z, Janaki T & Biro S (1999) Characterization of the gene for Factor C, an extracellular signal protein involved in morphological differentiation of Streptomyces griseus. Microbiology 145: 2245–2253

    Google Scholar 

  • Bramhill D (1997) Bacterial cell division. Annu. Rev. Cell. Dev. Biol. 13: 395–424

    Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685–713

    Google Scholar 

  • Chater KF (1998) Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 1465–1478.

    Google Scholar 

  • Chater KF & Losick R (1997) The mycelial life-style of Streptomyces coelicolor A3(2) and its relatives. In: Shapiro JH & Dworkin M (Eds) Bacteria as Multicellular Organisms (pp 149–182). Oxford University Press, New York.

    Google Scholar 

  • Dai K & Lutkenhaus J (1991) ftsZ is an essential cell division gene in Escherichia coli. J. Bacteriol. 173: 3500–3506

    Google Scholar 

  • Daza A, Martin JF, Dominguez A & Gil JA (1989) Sporulation of several species of Streptomyces in submerged cultures after nutritional downshift. J. Gen. Microbiol. 135: 2483–2491

    Google Scholar 

  • Hobbs G, Frazer CM, Gardner DCJ, Flett F & Oliver SG (1989) Dispersed growth of Streptomyces in liquid culture. Appl.Microbiol. Biotechnol. 31: 272–277

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM & Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. Norwich: John Innes Foundation.

    Google Scholar 

  • Janssen GR & Bibb MJ (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124: 133–134

    Google Scholar 

  • Kawamoto S & Ensign JC (1995) Cloning and characterization of a gene involved in regulation and sporulation and cell division in Streptomyces griseus. Actinomycetologica 9: 136–151

    Google Scholar 

  • Kawamoto S, Watanabe H, Hesketh A, Ensign JC & Ochi K (1997) Expression of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. Microbiology 143: 1077–1086

    Google Scholar 

  • Kelemen GH & Buttner MJ (1998) Initiation of aerial mycelium formation in Streptomyces. Curr. Opinion Microbiol. 1: 656–662

    Google Scholar 

  • Kendrick K & Ensign JC (1983) Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155: 357–366

    Google Scholar 

  • Larson JL & Herschberger CL (1986) The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15: 199–209.

    Google Scholar 

  • Lutkenhaus J & Addinall SG (1997) Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66: 93–116

    Google Scholar 

  • Lydiate DJ, Malpartida F & Hopwood DA (1985) The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35: 223–235

    Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, & MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integration vector. Gene 111: 1–68

    Google Scholar 

  • Martinez-Costa OH, Martin-Triana AJ, Martinez E, Fernandez-Moreno M & Malpartida F (1999) An additional regulatory gene for actinorhodin production in Streptomyces lividans involves a LysR-type transcription regulator. J. Bacteriol. 181: 4353–4364

    Google Scholar 

  • McCormick JR, Su EP, Driks A & Losick R (1994) Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol. 14: 243–254

    Google Scholar 

  • McCormick JR & Losick R (1996) Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2). J. Bacteriol. 178: 5295–5301

    Google Scholar 

  • Messing J, Crea R & Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res. 9: 309–321

    Google Scholar 

  • Motamedi H, Shafiee A & Cai SJ (1995) Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160: 25–31

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Strauch E, Takano E, Baylis HA, & Bibb MJ (1991) The stringent response in Streptomyces coelicolor A3(2). Mol. Microbiol. 5: 289–298

    Google Scholar 

  • van Wezel GP, van der Meulen J, Kawamoto S, Luiten RGM, Koerten HK & Kraal B (2000) ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J. Bacteriol. 182: 5653–5662

    Google Scholar 

  • Vara J, Lewandowska-Skarbek M, Wang Y-G, Donadio S & Hutchinson CR (1989) Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872–5881

    Google Scholar 

  • Ward JE Jr & Lutkenhaus J (1985) Overproduction of FtsZ induces minicell formation in E.coli. Cell 42: 941–949

    Google Scholar 

  • Yanish-Perron C, Vieira J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors.Gene 33: 103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles P. van Wezel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wezel, G.P., van der Meulen, J., Taal, E. et al. Effects of increased and deregulated expression of cell division genes on the morphology and on antibiotic production of streptomycetes. Antonie Van Leeuwenhoek 78, 269–276 (2000). https://doi.org/10.1023/A:1010267708249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010267708249

Navigation