Skip to main content
Log in

Behavior and Physiology of the Redside Dace, Clinostomus elongatus, a Threatened Species in Michigan

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The threatened status of redside dace, Clinostomus elongatus, in Michigan inhibits study and management of remnant populations of the species. We present a phenotypic approach to evaluate the use of redside dace from New York as behavioral and physiological models for Michigan populations. We evaluated behavioral similarity by comparing patterns of microhabitat use and physiological similarity by comparing resting routine metabolic rates measured in the field. Variation between sites in available microhabitat made direct comparisons difficult; however, redside dace in Michigan and New York showed a common preference for mid-water positions in the deepest parts of pools under overhanging structure. Field measurements at 10°C showed that Michigan fish had higher metabolic rates than rates predicted for New York fish at the same temperature, though biological significance of this difference is questionable. In laboratory experiments, we measured metabolic rate and upper thermal tolerance in relation to acclimation temperatures of 6–20°C using redside dace collected from four streams in New York. Redside dace showed a significant increase in metabolic rate as acclimation temperature increased (Q10=2.3). Critical thermal maxima (CTM) of New York redside dace also increased with acclimation temperature. Obstacles related to the transferability of habitat use data and variation in physiology due to uncontrolled and unmeasured environmental factors in the field lead us to urge caution when extrapolating behavioral and physiological characteristics between widely-separated populations of a species. Despite these obstacles, we described useful patterns of microhabitat use and provided estimates of physiological tolerances that will assist resource managers in the recovery of Michigan redside dace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Altmann, J. 1974. Observational study of behavior: sampling methods. Behaviour 49: 226-267.

    Google Scholar 

  • Bailey, R.M. & G.R. Smith. 1981. Origin and geography of the fish fauna of the Laurentian Great Lakes basin. Can. J. Fish. Aquat. Sci. 38: 1539-1561.

    Google Scholar 

  • Baltz, D.M., P.B. Moyle & N.J. Knight. 1982. Competitive interactions between benthic stream fishes, riffle sculpin, Cottus gulosus, and speckled dace, Rhinichthys osculus. Can. J. Fish. Aquat. Sci. 39: 1502-1511.

    Google Scholar 

  • Baltz, D.M. & P.B. Moyle. 1984. Segregation by species and size class of rainbow trout (Salmo gairdneri) and the Sacramento sucker (Catastomus occidentalis) in three California streams. Env. Biol. Fish. 10: 101-110.

    Google Scholar 

  • Barrett, P.J. & O.E. Maughan. 1994. Habitat preferences of introduced smallmouth bass in a central Arizona stream. North Amer. J. Fish. Manage. 14: 112-118.

    Google Scholar 

  • Becker, C.D. & R.G. Genoway. 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Env. Biol. Fish. 4: 245-256.

    Google Scholar 

  • Becker, G. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison. 1052 pp.

    Google Scholar 

  • Binns, N.A. & R. Remmick. 1994. Response of cutthroat trout and their habitat to drainage-wide habitat management at Huff Creek, Wyoming. North Amer. J. Fish. Manage. 14: 669-680.

    Google Scholar 

  • Bonin, J.D. 1981. Measuring thermal limits of fish. Trans. Amer. Fish. Soc. 110: 662.

    Google Scholar 

  • Bozek, M.A. & F.J. Rahel. 1992. Generality of microhabitat suitability models for young Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) across sites and among years in Wyoming streams. Can. J. Fish. Aquat. Sci. 49: 552-564.

    Google Scholar 

  • Brett, J.R. & T.D.D. Groves. 1979. Physiological energetics. pp. 279-352. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, New York.

    Google Scholar 

  • Bryan, J.D., L.G. Hill & W.H. Neill. 1984. Interdependence of acute temperature preference in the plains minnow. Trans. Amer. Fish. Soc. 113: 557-562.

    Google Scholar 

  • Castleberry, D.T. & J.J. Cech, Jr. 1986. Physiological responses of a native and an introduced desert fish to environmental stressors. Ecology 67: 912-918.

    Google Scholar 

  • Cech, J.J. Jr., M.J. Massingill, B. Vondracek & A.L. Linden. 1985. Respiratory metabolism of mosquitofish, Gambusia affinis: effects of temperature, dissolved oxygen, and sex difference. Env. Biol. Fish. 13: 297-307.

    Google Scholar 

  • Cech, J.J. Jr., S.J. Mitchell, D.T. Castelberry & M. McEnroe. 1990. Distribution of California stream fishes: influence of environmental temperature and hypoxia. Env. Biol. Fish. 29: 95-105.

    Google Scholar 

  • Cherry, D.S., K.L. Dickson & J. Cairns, Jr. 1977. Preferred, avoided, and lethal temperatures of fish during rising temperature conditions. J. Fish. Res. Board Can. 34: 239-246.

    Google Scholar 

  • Clausen, R.G. 1936. Oxygen consumption in fresh water fishes. Ecology 17: 216-226.

    Google Scholar 

  • Daniels, R.A. & S.J. Wisniewski. 1994. Feeding ecology of redside dace, Clinostomus elongatus. Ecol. Fresh. Fish 3: 176-183.

    Google Scholar 

  • Ege, R. & A. Krogh. 1914. On the relation between temperature and the respiratory exchange in fishes. Intern. Rev. ges. Hydrobiol. Hydrog. 7: 48-55.

    Google Scholar 

  • Endler, J.A. 1986. Natural selection in the wild. Princeton University, Princeton. 336 pp.

    Google Scholar 

  • Facey, D.E. 1987. Metabolic constraints and microhabitat selection in four stream fishes. Ph.D. Dissertation, University of Georgia, Athens. 91 pp.

    Google Scholar 

  • Fausch, K.D., C. Gowan, A.D. Richmond & S.C. Riley. 1995. The role of dispersal in trout population response to habitat formed by large woody debris in Colorado mountain streams. Bulletin Français de la Pêche de la Pisiculture 337/338/339: 179-190.

    Google Scholar 

  • Foster, S.A., J.A. Baker & M.A. Bell. 1992. Phenotypic integration of life history and morphology: an example from three-spined stickleback, Gasterosteus aculeatus L. J. Fish Biol. 41(Supplement B): 21-35.

    Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1-98. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 6, Academic Press, New York.

    Google Scholar 

  • Fry, F.E.J. & J.S. Hart. 1948. The relation of temperature to oxygen consumption in the goldfish. Biol. Bull. 94: 66-77.

    Google Scholar 

  • Gatz, A. Jr. 1979. Ecological morphology of freshwater stream fishes. Tulane Stud. Zool. Bot. 21: 91-124.

    Google Scholar 

  • Gilbert, C. 1980. Redside dace, Clinostomus elongatus. p. 148. In: D. Lee, C. Gilbert, C. Hocutt, R. Jenkins, D. McAllister & J. Stauffer, Jr. (ed.) Atlas of North American Freshwater Fishes, North Carolina State Museum of Natural History, Raleigh.

    Google Scholar 

  • Groshens, T.P. & D.J. Orth. 1994. Transferability of habitat suitability criteria for smallmouth bass, Micropterus dolomieu. Rivers 4: 194-212.

    Google Scholar 

  • Hill, J. & G.D. Grossman. 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685-698.

    Google Scholar 

  • Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monogr. 54: 187-211.

    Google Scholar 

  • Jobling, M. 1981. Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. J. Fish Biol. 19: 439-455.

    Google Scholar 

  • Karr, J.R., L.A. Toth & D.R. Dudley. 1985. Fish communities of midwestern rivers: a history of degradation. Bioscience 35: 90-95.

    Google Scholar 

  • Konstantinov, A.S., V.V. Zdanovich & D.G. Tikhomirov. 1990. The effect of temperature fluctuations on metabolic rate and energetics of juvenile fish. J. Ichthyol. 30: 38-47.

    Google Scholar 

  • Koster, W. 1939. Some phases of the life history and relationships of the cyprinid, Clinostomus elongatus (Kirtland). Copeia 1939: 201-208.

    Google Scholar 

  • Kowalski, K.T., J.P. Schubauer, C.L. Scott & J.R. Spotila. 1978. Intraspecific and seasonal differences in the temperature tolerance of stream fish. J. Therm. Biol. 3: 105-108.

    Google Scholar 

  • Matthews, W.J. 1986. Geographic variation in thermal tolerance of a widespread minnow Notropis lutrensis of the North American mid-west. J. Fish Biol. 28: 407-417.

    Google Scholar 

  • McClanahan, L.L., C.R. Feldmeth, J. Jones & D.L. Soltz. 1986. Energetics, salinity and temperature tolerance in the mohave tui chub, Gila bicolor mohavensis. Copeia 1986: 45-52.

    Google Scholar 

  • McKee, P. & B. Parker. 1982. The distribution, biology and status of the fishes Campostoma anomalum, Clinostomus elongatus, Notropis photogenis, and Fundulus notatus in Canada. Can. J. Zool. 60: 1347-1358.

    Google Scholar 

  • Meade, L., D. McNeely, L. Kornman & A. Surmont. 1986. The redside dace, Clinostomus elongatus (Kirtland) in Kentucky, with comments about its habitat requirements. Trans. Kent. Acad. Sci. 47: 121-125.

    Google Scholar 

  • Meffe, G.K. & C.R. Carroll. 1994. Principles of conservation biology. Sinauer, Sunderland. 600 pp.

    Google Scholar 

  • Novinger, D.C. 1995. Behavioral, physiological and morphological similarity among populations of redside dace, a threatened species in Michigan. Masters Thesis, Michigan State University, East Lansing. 108 pp.

    Google Scholar 

  • Paladino, F.V., J.R. Spotila, J.P. Schubauer & K.T. Kowalski. 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Rev. Can. Biol. 39: 115-122.

    Google Scholar 

  • Parker, B., P. McKee & R. Campbell. 1988. Status of the redside dace, Clinostomus elongatus, in Canada. Can. Field-Nat. 102: 163-169.

    Google Scholar 

  • Potvin, C. & D.A. Roff. 1993. Distribution-free and robust statistical methods: viable alternatives to parametric statistics? Ecology 74: 1617-1628.

    Google Scholar 

  • Rajagopal, P.K. & R.H. Kramer. 1974. Respiratory metabolism of Utah chub, Gila atraria (Girard) and speckled dace, Rhinichthys osculus (Girard). J. Fish Biol. 6: 215-222.

    Google Scholar 

  • Schwartz, F. & J. Norvell. 1958. Food, growth and sexual dimorphism of the redside dace Clinostomus elongatus (Kirtland) in Linesville Creek, Crawford County, Pennsylvania. The Ohio J. Sci. 58: 311-316.

    Google Scholar 

  • Scott, N.L. 1987. Seasonal variation of critical thermal maximum in the redbelly dace, Phoxinus erythtogaster (Cyprinidae). Southwest. Nat. 32: 435-438.

    Google Scholar 

  • Shields, B.A. & J.C. Underhill. 1993. Phenotypic plasticity of a transplanted population of dwarf cisco, Coregonus artedii. Env. Biol. Fish. 37: 9-23.

    Google Scholar 

  • Smith, C. 1987. The inland fishes of New York State. Cornell University Press, Ithaca. 522 pp.

    Google Scholar 

  • Smith, G.R., J. Taylor & T. Grimshaw. 1981. Ecological survey of fishes in the Raisin River drainage, Michigan. Mich. Acad. Sci. Papers 13: 275-305.

    Google Scholar 

  • Strauss, R.E. 1979. Reliability estimates for Ivlev's electivity index, the forage ratio, and a proposed linear index of food selection. Trans. Amer. Fish. Soc. 108: 344-352.

    Google Scholar 

  • Trautman, M. 1981. The fishes of Ohio. Ohio State University Press, Columbus. 782 pp.

    Google Scholar 

  • White, M.M. 1988. Genetic variation and population structuring in the rosyside dace, Clinostomus funduloides, in Ohio. Ohio J. Sci. 88: 114-116.

    Google Scholar 

  • Wilzbach, M.A. 1985. Relative roles of food abundance and cover in determining the habitat distribution of stream-dwelling cutthroat trout (Salmo clarki). Can. J. Fish. Aquat. Sci. 42: 1668-1672.

    Google Scholar 

  • Winberg, G.G. 1956. Rate of metabolism and food requirements of fishes. J. Fish. Res. Board Can.Trans. Ser. 194, 1960, Ottawa. 251 pp.

    Google Scholar 

  • Zar, J.H. 1984. Biostatistical analysis. Prentice Hall, Englewood Cliffs. 718 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novinger, D.C., Coon, T.G. Behavior and Physiology of the Redside Dace, Clinostomus elongatus, a Threatened Species in Michigan. Environmental Biology of Fishes 57, 315–326 (2000). https://doi.org/10.1023/A:1007526414384

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007526414384

Navigation