Skip to main content

Advertisement

Log in

Thermal responses of three native fishes from estuarine areas of the Beagle Channel, and their implications for climate change

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this work was to analyze the thermal responses of Odontesthes nigricans, Eleginops maclovinus and diadromous Galaxias maculatus, key species in estuarine areas of the Beagle Channel (Tierra del Fuego, Argentina), under a climate change scenario. We hypothesized that in the southernmost limit of the species’ distribution, individuals are more likely to be affected by indirect consequences of climate change rather than direct temperature mortality. Their thermal tolerance limits were assessed using the Critical Thermal Methodology and their preferred temperatures, using a thermal gradient. Additionally, the Fulton’s condition factor and the energy density of individuals were analyzed as a proxy of the condition of fishes acclimated to different temperatures. Results showed that species analyzed have the ability to acclimate to the different temperatures, intermediate to large tolerance polygons and positive relationships between preferred and acclimation temperatures, indicating their eurythermic nature. Thus, O. nigricans, E. maclovinus and diadromous G. maculatus populations from Tierra del Fuego could experience enhanced performances because of moderate warming being and, as it was hypothesized, be influenced by indirect consequences of climate change (habitat degradation or changes in trophic structure) since they are living in environments that are widely cooler than their maximum tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahams, M., 2006. The physiology of antipredator behaviour: what you do with what you’ve got. Behaviour and Physiology of Fish. Fish Physiology 24: 79–108.

    Article  Google Scholar 

  • Aigo, J., M. E. Lattuca & V. Cussac, 2014. Susceptibility of native perca (Percichthys trucha) and exotic rainbow trout (Oncorhynchus mykiss) to high temperature in Patagonia: different physiological traits and distinctive responses. Hydrobiologia 736: 73–82.

    Article  CAS  Google Scholar 

  • Barrantes, M. E., M. E. Lattuca, F. A. Vanella & D. A. Fernández, 2017. Thermal ecology of Galaxias platei (Pisces, Galaxiidae) in South Patagonia: perspectives under a climate change scenario. Hydrobiologia. https://doi.org/10.1007/s10750-017-3275-3.

    Google Scholar 

  • Becker, C. D. & R. G. Genoway, 1979. Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fish. Environmental Biology of Fishes 4: 245–256.

    Article  Google Scholar 

  • Beitinger, T. L. & W. A. Bennett, 2000. Quantification of the role of acclimation temperature in temperature tolerance of fishes. Environmental Biology of Fishes 58: 277–288.

    Article  Google Scholar 

  • Beitinger, T. L. & W. I. Lutterschmidt, 2011. Measures of thermal tolerances. In Farrell, A. P. (ed.), Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press, San Diego: 1695–1702.

    Chapter  Google Scholar 

  • Beitinger, T. L., W. A. Bennett & R. W. McCauley, 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes 58: 237–275.

    Article  Google Scholar 

  • Bennett, W. A. & T. L. Beitinger, 1997. Temperature tolerance of the sheepshead minnow, Cyprinodon variegatus. Copeia 1: 77–87.

    Article  Google Scholar 

  • Bettoli, P. W., W. H. Neill & S. W. Kelsh, 1985. Temperature preference and heat resistance of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, Hypophthalmichthys mobilis (Gray), and their F1 hybrid. Journal of Fish Biology 27: 239–247.

    Article  Google Scholar 

  • Bilyk, K. T. & A. L. DeVries, 2011. Heat tolerance and its plasticity in Antarctic fishes. Comparative Biochemistry and Physiology Part A 158: 3282–3390.

    Article  Google Scholar 

  • Boy, C. C., A. F. Pérez, D. A. Fernández, J. Calvo & E. R. Morriconi, 2009. Energy allocation in relation to spawning and overwintering of a diadromous puyen (Galaxias maculatus) population in the southernmost limit of the species distribution. Polar Biology 32: 9–14.

    Article  Google Scholar 

  • Boy, C. C., A. F. Pérez, M. Tagliaferro, M. E. Lattuca, M. Gutiérrez & F. A. Vanella, 2017. Exploring bioenergetics of diadromous Galaxias maculatus in the southernmost extreme of its distribution: summer is not always the better season. Journal of Experimental Marine Biology and Ecology 488: 102–110.

    Article  Google Scholar 

  • Brett, J. R., 1970. Environmental factors, part I. Temperature. In Kinne, O. (ed.), Marine Ecology. Wiley, London: 513–560.

    Google Scholar 

  • Carrea, C., V. E. Cussac & D. E. Ruzzante, 2013. Genetic and phenotypic variation among Galaxias maculatus populations reflects contrasting landscape effects between northern and southern Patagonia. Freshwater Biology 58: 36–49.

    Article  Google Scholar 

  • Carveth, C. J., A. M. Widmer & S. A. Bonar, 2006. Comparison of upper thermal tolerances of native and non-native fish species in Arizona. Transactions of the American Fisheries Society 135: 1433–1440.

    Article  Google Scholar 

  • Chatterjee, N., A. K. Pal, S. M. Manush, T. Das & S. C. Mukherjee, 2004. Thermal tolerance and oxygen consumption of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. Journal of Thermal Biology 29: 265–270.

    Article  Google Scholar 

  • Cousseau, M. B. & R. G. Perrota, 2000. Peces Marinos de Argentina. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata.

    Google Scholar 

  • Cowles, R. B. & C. M. Bogert, 1944. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History 83: 265–296.

    Google Scholar 

  • Currie, R. J., W. A. Bennett & T. L. Beitinger, 1998. Critical thermal minima and maxima of three freshwater game-fish species acclimated to constant temperatures. Environmental Biology of Fishes 51: 187–200.

    Article  Google Scholar 

  • Currie, R. J., W. A. Bennett, T. L. Beitinger & D. S. Cherry, 2004. Upper and lower temperature tolerances of juvenile freshwater game-fish species exposed to 32 days of cycling temperatures. Hydrobiologia 532: 127–136.

    Article  Google Scholar 

  • Cussac, V., S. Ortubay, G. Iglesias, D. Milano, M. E. Lattuca, J. P. Barriga, M. Battini & M. Gross, 2004. The role of biological traits in the distribution of South American galaxiid fishes. Journal of Biogeography 31: 103–121.

    Article  Google Scholar 

  • Cussac, V., D. A. Fernández, S. E. Gómez & H. L. López, 2009. Fishes of southern South America: a story driven by temperature. Fish Physiology and Biochemistry 35: 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Dabruzzi, T. F., W. A. Bennett, J. L. Rummer & N. A. Fangue, 2012. Thermal Ecology of Juvenile Ribbontail Stingray, Taeniura lymma (Forsskål, 1775), from a Mangal Nursery in the Banda Sea. Hydrobiologia. https://doi.org/10.1007/s10750-012-1249-z.

    Google Scholar 

  • Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak & P. R. Martin, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States 105: 6668–6672.

    Article  CAS  Google Scholar 

  • Dyer, B. S., 2000. Revisión sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes). Estudios Oceanológicos 19: 99–127.

    Google Scholar 

  • Eme, J. & W. A. Bennett, 2009. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. Journal of Thermal Biology 34: 220–225.

    Article  Google Scholar 

  • Fangue, N. A. & W. A. Bennett, 2003. Thermal tolerance responses of laboratory-acclimated and seasonally-acclimatized Atlantic stingray, Dasyatis sabina. Copeia 2: 315–325.

    Article  Google Scholar 

  • Fernández, D. A., M. E. Lattuca, C. C. Boy, A. F. Pérez, S. G. Cevallos, F. A. Vanella, E. R. Morriconi, G. F. Malanga, D. R. Aureliano, S. Rimbau & J. Calvo, 2009. Total energy content and energy densities of the main tissues of Sub-Antarctic fishes from the Beagle Channel. Fish Physiology & Biochemistry 35: 181–188.

    Article  Google Scholar 

  • Ficke, A. D., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.

    Article  Google Scholar 

  • Fraser, C. I., R. Nikula, D. E. Ruzzante & J. M. Waters, 2012. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends in Ecology and Evolution 27: 462–471.

    Article  PubMed  Google Scholar 

  • Fry, F. E. J., 1947. Effects of the environment on animal activity. University of Toronto Studies, Biological Series 55: 1–62.

    Google Scholar 

  • Fry, F. E. J., 1971. The effect of environmental factors on the physiology of fish. In Hoar, W. S. & D. J. Randall (eds), Fish Physiology. Academic Press, New York: 1–98.

    Google Scholar 

  • Froese, R., 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology 22: 241–253.

    Article  Google Scholar 

  • Gille, S. T., 2002. Warming of the southern ocean since the 1950s. Science 295: 1275–1277.

    Article  CAS  PubMed  Google Scholar 

  • Golovanov, V. K., 2006. The ecological and evolutionary aspects of thermoregulation behavior on fish. Journal of Ichthyology 46: 180–187.

    Article  Google Scholar 

  • Hickling, R., D. B. Roy, J. K. Hill, R. Fox & C. D. Thomas, 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450–455.

    Article  Google Scholar 

  • Hochachka, P. W. & G. N. Somero, 1971. Biochemical adaptation to the environment. In Hoar, W. S. & D. J. Randall (eds), Fish Physiology. Academic Press, New York and London: 100–148.

    Google Scholar 

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell & C. A. Johnson (eds), 2001. Contribution of Working Group I to The Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hulme, M., G. J. Jenkins, L. Xianfu, J. R. Turpenny, T. D. Mitchell, G. R. Jones, J. Lowe, J. M. Murphy, D. Hassell, P. Boorman, R. McDonald & S. Hill, 2002. The UKCIP02 Scientific Report. University of East Anglia, Norwich.

    Google Scholar 

  • IPCC, 2013. Climate change 2013: The physical basis. Contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

  • Jobling, M., 1981. Temperature tolerance and the final preferendum-rapid methods for the assessment of optimum growth temperatures. Journal of Fish Biology 19: 439–455.

    Article  Google Scholar 

  • Jobling, M., 1994. Fish Bioenergetics. Chapman & Hall, London.

    Google Scholar 

  • Johnson, J. A. & S. W. Kelsch, 1998. Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environmental Biology of Fishes 4: 447–458.

    Article  Google Scholar 

  • Kelsch, S. W. & W. H. Neill, 1990. Temperature preference versus acclimation in fishes: selection for changing metabolic optima. Transactions of the American Fisheries Society 119: 601–610.

    Article  Google Scholar 

  • Komoroske, L. M., R. E. Connon, J. Lindberg, B. S. Cheng, G. Castillo, M. Hasenbein & N. A. Fangue, 2014. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conservation Physiology 2: 1–13.

    Article  Google Scholar 

  • Last, P. R., W. T. White, D. C. Gledhill, A. J. Hobday, R. Brown, G. J. Edgar & G. Pecl, 2011. Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20: 58–72.

    Article  Google Scholar 

  • Lattuca, M. E., I. E. Lozano, D. Brown & C. A. Luizon, 2015. Natural growth, otolith shape and diet analyses of Odontesthes nigricans Richardson (Atherinopsidae) from southern Patagonia. Estuarine, Coastal and Shelf Science 166: 105–114.

    Article  Google Scholar 

  • Lesica, P. & F. W. Allendorf, 1995. When are peripheral populations valuable for conservation? Conservation Biology 9: 753–760.

    Article  Google Scholar 

  • Ludsin, S. A. & D. R. DeVries, 1997. First-year recruitment of largemouth bass: the interdependency of early life stages. Ecological Applications 7: 1024–1038.

    Article  Google Scholar 

  • Lutterschmidt, W. I. & V. H. Hutchison, 1997. The critical thermal maximum: history and critique. Canadian Journal of Zoology 75: 1561–1574.

    Article  Google Scholar 

  • Madenjian, C. P., R. F. Elliot, T. J. DeSorcie, R. M. Stedman, D. V. O’Connor & D. V. Rottiers, 2000. Lipid concentrations in Lake Michigan fishes: seasonal, spatial, ontogenetic, and long-term trends. Journal of Great Lakes Research 26: 427–444.

    Article  CAS  Google Scholar 

  • Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.

    Article  Google Scholar 

  • McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken & K. S. White (eds), 2001. Contribution of Working Group II to The Third Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Google Scholar 

  • McDowall, R., 1970. The galaxiid fish of New Zealand. Bulletin of the Museum of Comparative Zoology 139: 341–432.

    Google Scholar 

  • Mora, C. & M. F. Maya, 2006. Effect of the rate of temperature increase of the dynamic method on the heat tolerances of fishes. Journal of Thermal Biology 31: 337–341.

    Article  Google Scholar 

  • Munday, P. L., G. P. Jones, M. S. Pratchett & A. J. Williams, 2008. Climate change and the future for coral reef fishes. Fish and Fisheries 9: 261–285.

    Article  Google Scholar 

  • Paine, R. T., 1971. The measurement and application of the calorie to ecological problems. Annual Review of Ecology, Evolution, and Systematics 2: 145–164.

    Article  Google Scholar 

  • Paladino, R. V., J. R. Spotila, J. P. Schubauer & K. T. Kowalski, 1980. The critical thermal maximum: a technique used to elucidate physiological stress and adaptation in fishes. Revue Canadienne de Biologie 39: 115–122.

    Google Scholar 

  • Pequeño, G., 1989. The geographical distribution and taxonomic arrangement of South American nototheniid fishes (Osteichthyes, Nototheniidae). Boletín de la Sociedad de Biología de Concepción 60: 183–200.

    Google Scholar 

  • Pörtner, H. O. & M. A. Peck, 2010. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. Journal of Fish Biology 77: 1745–1779.

    Article  PubMed  Google Scholar 

  • Pörtner, H. O. & M. A. Peck, 2011. Effects of climate change. In Farrell, A. P. (ed.), Encyclopedia of Fish Physiology: From Genome to Environment. Academic Press, San Diego: 1738–1745.

    Chapter  Google Scholar 

  • Richardson, J., J. A. T. Boubée & D. W. West, 1994. Thermal tolerance and preference of some native New Zealand freshwater fish. New Zealand Journal of Marine and Freshwater Research 28: 399–407.

    Article  Google Scholar 

  • Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin Fisheries Research Board of Canada 191: 1–382.

    Google Scholar 

  • Root, T. L., J. T. Price, K. R. Hall, S. Schneider, C. Rosenzweigk & J. A. Pounds, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

    Article  CAS  PubMed  Google Scholar 

  • Rottiers, D. V. & R. M. Tucker, 1982. Proximate composition and caloric content of eight Lake Michigan fishes. U.S. Fish and Wildlife Service Technical Papers 108.

  • Shultz, A. D., Z. C. Zuckerman & C. D. Suski, 2016. Thermal tolerance of nearshore fishes across seasons: implications for coastal fish communities in a changing climate. Marine Biology 163: 83–92.

    Article  Google Scholar 

  • Schurmann, H., J. F. Steffensen & J. P. Lomholt, 1991. The influence of hypoxia on the preferred temperature of rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology 157: 75–86.

    Google Scholar 

  • Shearer, K. D., 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119: 63–88.

    Article  CAS  Google Scholar 

  • Shuter, B. J. & J. R. Post, 1990. Climate, population viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society 119: 314–336.

    Article  Google Scholar 

  • Sogard, S. M. & M. L. Spencer, 2004. Energy allocation in juvenile sablefish: effects of temperature ration and body size. Journal of Fish Biology 64: 726–738.

    Article  Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. Freeman and Company, New York.

    Google Scholar 

  • Strüssmann, C. A., D. O. Conover, G. M. Somoza & L. A. Miranda, 2010. Implications of climate change for the reproductive capacity and survival of the New World silversides (family Atherinopsidae). Journal of Fish Biology 77: 1818–1834.

    Article  PubMed  Google Scholar 

  • Tesch, F. W., 1968. Age and growth. In Ricker, W. E. (ed.), Methods for Assessment of Fish Production in Fresh Waters. Blackwell Scientific Publications, Oxford: 93–123.

    Google Scholar 

  • Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Urbina, M. A. & C. N. Glover, 2013. Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia. Physiological and Biochemical Zoology 86: 740–749.

    Article  PubMed  Google Scholar 

  • Waters, J. M. & C. P. Burridge, 1999. Extreme intraspecific mitochondrial DNA sequence divergence in Galaxias maculatus (Osteichthys: Galaxiidae), one of the world’s most widespread freshwater fish. Molecular Phylogenetics and Evolution 11: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Wernberg, T., B. D. Russell, M. S. Thomsen, F. D. Gurgel, C. J. A. Bradshaw, E. S. Poloczanska & S. D. Connell, 2011. Seaweed communities in retreat from ocean warming. Current Biology 21: 1828–1832.

    Article  CAS  PubMed  Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis. Prentice-Hall International Editions, New Jersey.

    Google Scholar 

  • Zattara, E. E. & A. C. Premoli, 2005. Genetic structuring in Andean landlocked populations of Galaxias maculatus: effects of biogeographic history. Journal of Biogeography 32: 5–14.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Consejo Nacional de Investigaciones Científicas y Técnicas for providing funding (Grant Numbers PIP 0321, PIP 0440, P-UE CADIC-CONICET 2016), D. Aureliano, S. Rimbau and M. Gutiérrez for their technical support and Frank Sola for his assistance with the English language of the manuscript. We also give special thanks to Dr. V. Cussac and three anonymous reviewers for their suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Lattuca.

Additional information

Handling editor: Michael Power

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lattuca, M.E., Boy, C.C., Vanella, F.A. et al. Thermal responses of three native fishes from estuarine areas of the Beagle Channel, and their implications for climate change. Hydrobiologia 808, 235–249 (2018). https://doi.org/10.1007/s10750-017-3424-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3424-8

Keywords

Navigation