Skip to main content
Log in

Cell cycle activation by plant parasitic nematodes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sedentary nematodes are important pests of crop plants. They are biotrophic parasites that can induce the (re)differentiation of either differentiated or undifferentiated plant cells into specialized feeding cells. This (re)differentiation includes the reactivation of the cell cycle in specific plant cells finally resulting in a transfer cell-like feeding site. For growth and development the nematodes fully depend on these cells. The mechanisms underlying the ability of these nematodes to manipulate a plant for its own benefit are unknown. Nematode secretions are thought to play a key role both in plant penetration and feeding cell induction. Research on plant-nematode interactions is hampered by the minute size of cyst and root knot nematodes, their obligatory biotrophic nature and their relatively long life cycle. Recently, insights into cell cycle control in Arabidopsis thaliana in combination with reporter gene technologies showed the differential activation of cell cycle gene promoters upon infection with cyst or root knot nematodes. In this review, we integrate the current views of plant cell fate manipulation by these sedentary nematodes and made an inventory of possible links between cell cycle activation and local, nematode-induced changes in auxin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasubramanian, M. and Rangarwami, G. 1962. Presence of indole compounds in nematode galls. Nature 194: 714–715.

    Google Scholar 

  • Bird, A.F. 1961. The ultrastructure and histochemistry of a nematode-induced giant cell. J. Biophys. Biochem. Cytol. 11: 701–715.

    PubMed  Google Scholar 

  • Bird, A.F. 1962. The inducement of giant cells by Meloidogyne incognita. Nematologica 8: 1–10.

    Google Scholar 

  • Bird, A.F. 1966. Some observations on exudates from Meloidogyne larvae. Nematologica 12: 471–482.

    Google Scholar 

  • Bird, A.F. 1973. Observations on chromosomes and nucleoli in syncytia induced by Meloidogyne javanica. Physiol. Plant. Path. 3: 387–391.

    Google Scholar 

  • Brodsky, V.Y. and Uryvaeva, I.V. 1977. Cell polyploidy: its relation to tissue growth and function. Int. Rev. Cytol. 50: 275–332.

    PubMed  Google Scholar 

  • Brodsky, V.Y. and Uryvaeva, I.V. 1985. Genome Multiplication in Growth and Development (Development and Cell Biology Series, vol. 15), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Burssens, S., Van Montagu, M. and Inzé, D. 1998. The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36: 9–19.

    Google Scholar 

  • Christie, J.R. 1936. The development of root-knot nematode galls. Phytopathology 26: 1–22.

    Google Scholar 

  • Chung, S.K. and Parish, R.W. 1995. Studies on the promoter of the Arabidopsis thaliana cdc2a gene. FEBS Lett. 362: 215–219.

    PubMed  Google Scholar 

  • Cid del Prado, V.I. and Maggenti, A.R. 1988. Description of Gracilacus hamicaudata sp. n. (Nematoda: Criconematidae) with biological and histopathological observations. Rev. Nematol. 11: 29–33.

    Google Scholar 

  • Cohn, E. and Kaplan, D.T. 1983. Parasitic habits of Trophotylenchus floridensis (Tylenchulidae) and its taxonomic relationship to Tylenchulus semipenetrans and allied species. J. Nematol. 15: 514–523.

    Google Scholar 

  • Cole, C.S. and Howard, H.W. 1958. Observations on giant cells in potato roots infected with Heterodera rostochiensis. J. Helminthol. 32: 135–144.

    Google Scholar 

  • D'Amato, F. 1984. Role of polyploidy in reproductive organs and tissues. In: B.M. Johri (Ed.) Embryology of Angiosperms, Springer-Verlag, Berlin, pp. 519–566.

    Google Scholar 

  • Davide, R.G. and Triantaphyllou, A.C. 1968. Influence of the environment on development and sex differentiation of root-knot nematode. III. Effect of foliar application of maleic hydrazide. Nematologica 14: 37–46.

    Google Scholar 

  • De Almeira Engler, J., De Vleesschauwer, V., Burssens, S., Celenza, J.L. Jr., Inzé, D., Van Montagu, M., Engler, G. and Gheysen, G. 1999. The use of molecular markers and cell cycle inhibitors to analyze cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11: 793–807.

    PubMed  Google Scholar 

  • De Veylder, L., de Almeida Engler, J., Burssens, S., Manevski, A., Lescure, B., Van Montagu, M., Engler, G. and Inzé, D. 1999. A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta, in press.

  • Doerner, P., Jørgensen, J-E., You, R., Steppuhn, J. and Lamb, C. 1996. Control of root growth and development by cyclin expression. Nature 380: 520–523.

    PubMed  Google Scholar 

  • Dropkin, V.H. and Nelson, P.E. 1960. The histopathology of rootknot infections in soybeans. Phytopathology 50: 442–447.

    Google Scholar 

  • Endo, B.Y. 1964. Penetration and development of Heterodera glycines in soybean roots and related anatomical changes. Phytopathology 54: 79–88.

    Google Scholar 

  • Endo, B.Y. 1971. Synthesis of nucleic acids at infection sites of soybean roots parasitized by Heterodera glycines. Phytopathology 61: 395–399.

    Google Scholar 

  • Endo, B.Y. 1986. Histology and ultrastructural modifications induced by cyst nematodes. In: F. Lamberti and C.E. Taylor (Eds.) Cyst Nematodes, Plenum Press, New York, pp. 133–146.

    Google Scholar 

  • Endo, B.Y. 1991. Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Rev. Nematol. 14: 73–94.

    Google Scholar 

  • Ferreira, P.C.G., Hemerly, A.S., Villarroel, R., Van Montagu, M. and Inzé, D. 1991. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3: 531–540.

    PubMed  Google Scholar 

  • Ferreira, P.C.G., Hemerly, A., de Almeida Engler, J., Bergounioux, C., Burssens, S., Van Montagu, M., Engler, G. and Inzé, D. 1994a. Three distinct classes of Arabidopsis cyclins are expressed during different intervals of the cell cycle. Proc. Natl. Acad. Sci. USA 91: 11313–11317.

    PubMed  Google Scholar 

  • Ferreira, P.C.G., Hemerly, A.S., de Almeida Engler, J., Van Montagu, M., Engler, G. and Inzé, D. 1994b. Developmental expression of the Arabidopsis cyclin gene cyc1At. Plant Cell 6: 1763–1774.

    Article  PubMed  Google Scholar 

  • Fuerst, R., Soni, R., Murray, J. A. H. and Lindsey, K. 1996. Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana. Plant Physiol. 112: 1023–1033.

    PubMed  Google Scholar 

  • Gershon, D. 1970. Studies of aging in nematodes. I. The nematode as a model organism for aging research. Exp. Gerontol. 5: 7–12.

    PubMed  Google Scholar 

  • Gheysen, G., de Almeida Engler, J. and VanMontagu, M. 1997. Cell cycle regulation in nematode feeding sites. In: C. Fenoll, F.M.W. Grundler and S.A. Ohl (Eds.) Cellular and Molecular Aspects of Plant-Nematode Interactions, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 120–132.

    Google Scholar 

  • Glazer, I. and Orion, D. 1984. Influence of urea, hydroxyurea, and thiourea on Meloidogyne javanica and infected excised tomato roots in culture. J. Nematol. 16: 125–130.

    Google Scholar 

  • Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A. and Dessaux, Y. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 11: 156–162.

    PubMed  Google Scholar 

  • Golinowski, W., Grundler, F.M.W. and Sobczak, M. 1996. Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194: 103–116.

    Google Scholar 

  • Goodey, J.B. 1948. The galls caused by Anguillulina balsamophila (Thorne) Goodey on the leaves of Wyethia amplexicaulis Nutt and Balsamorizha sagittata. J. Helminthol. 22: 109–116.

    Google Scholar 

  • Goverse, A., Overmars, H., Engelbertink, J., Schots, A., Bakker, J. and Helder, J. 1998a. Are locally disturbed plant hormone balances responsible for feeding cell development by cyst nematodes? In: Proceedings of the 24th International Nematology Symposium, Dundee, UK, p. 41.

    Google Scholar 

  • Goverse, A., Biesheuvel, J., Wijers, G.J., Gommers, F.J., Bakker, J., Schots, A. and Helder, J. 1998b. In planta monitoring of the activity of two constitutive promoters, CaMV 35S and TR20, in developing feeding cells induced by Globodera rostochiensis using green fluorescent protein in combination with confocal laser scanning microscopy. Physiol. Mol. Plant Path. 52: 275–284.

    Google Scholar 

  • Goverse, A., Rouppe van der Voort, J.N.A.M., Rouppe van der Voort, C.B.M., Kavelaars, A., Schots, A., Bakker, J. and Helder, J. 1999. Naturally-induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells. Mol. Plant-Microbe Interact. 12: 872–881.

    PubMed  Google Scholar 

  • Grafi, G. and Larkins, B.A. 1995. Endoreduplication in maize endosperm: involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science 269: 1262–1264.

    Google Scholar 

  • Griffin, G.D. and Anderson, J.L. 1979. Effects of DCPA, EPTC, and chlorpropham on pathogenicity of Meloidogyne hapla to alfalfa. J. Nematol. 11: 32–36.

    Google Scholar 

  • Griffiths, B.S. and Robertson, W.M. 1988. A quantitative study of changes induced by Xiphinema diversicaudatum in root-tip galls of strawberry and ryegrass. Nematologica 34: 198–207.

    Google Scholar 

  • Grymaszewska, G. and Golinowski, W. 1991. Structure of syncytia induced byHeterodera avenae Woll. in roots of susceptible and resistant wheat (Triticum aestivum L.). J. Phytopath. 133: 307–319.

    Google Scholar 

  • Guida, G., Bleve-Zacheo, T. and Melillo, M. T. 1991. Galls induced by nematodes on tomato roots in vitro and in vivo. Giorn. Bot. Ital. 125: 968–969.

    Google Scholar 

  • Heidstra, R., Yang, W.C., Yalcin, Y., Peck, S., Emons, A., van Kammen, A. and Bisseling, T. 1997. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124: 1781–1787.

    PubMed  Google Scholar 

  • Helder, J., Smant, G., Goverse, A., Bakker, J. and Schots, A. 1998. Functional analysis of potato cyst nematode secretions. In: Proceedings of the 7th International Congress of Plant Pathology, Edinburgh, UK, p. 1.14.3S.

  • Hemerly, A.S., Ferreira, P.C.G., de Almeida Engler, J., Van Montagu, M., Engler, G. and Inzé, D. 1993. cdc2a expression in Arabidopsis thaliana is linked with competence for cell division. Plant Cell 5: 1711–1723.

    Article  PubMed  Google Scholar 

  • Hermsmeier, D., Mazarei, M. and Baum, T.J. 1998. Differential display analysis of the early compatible interaction between soybean and the soybean cyst nematode. Mol. Plant-Microbe Interact. 11: 1258–1263.

    Google Scholar 

  • Hussey, R.S. 1989. Disease-inducing secretions of plant-parasitic nematodes. Annu. Rev. Phytopath. 27: 123–141.

    Google Scholar 

  • Imajuku, Y., Hirayama, T., Endoh, H. and Oka, A. 1992. Exonintron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS Lett. 304: 73–77.

    PubMed  Google Scholar 

  • John, P.C.L., Zhang, K., Dong, C., Diederich, L. and Wightman, F. 1993. P34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin. Aust. J. Plant Physiol. 20:503–526.

    Google Scholar 

  • Johnson, R.N. and Viglierchio, D.R. 1969. A growth promoting substance occurring in an extract prepared from Heterodera schachtii larvae. Nematologica 15: 159–160.

    Google Scholar 

  • Jones, M.G.K. 1981. The development and function of plant cells modified by endoparasitic nematodes. In: B.M. Zuckerman and R.A. Rohde (Eds.) Plant Parasitic Nematodes, vol. III, Academic Press, New York, pp. 255–279.

    Google Scholar 

  • Jones, M.G.K. and Northcote, D.H. 1972. Nematode-induced syncytium: a multinucleate transfer cell. J. Cell Sci. 10: 789–809.

    PubMed  Google Scholar 

  • Jones, M.G.K. and Payne, H.L. 1978. Early stages of nematodeinduced giant-cell formation in roots of Impatiens balsamina. J. Nematol. 10: 70–84.

    Google Scholar 

  • Kabir, G. and Singh, R.M. 1989. Interphase nuclear structure and heterochromatin in Cicer spp. Cytologia 54: 27–32.

    Google Scholar 

  • Leyser, O. 1999. Plant hormones: ins and outs of auxin transport. Curr. Biol. 9: R8–R10.

    PubMed  Google Scholar 

  • Libbenga, K.R. and Harkes, P.A.A. 1973. Initial proliferation of cortical cells in the formation of root nodules in Pisum sativum L. Planta 114: 17–28.

    Google Scholar 

  • Linford, M.B. 1941. Parasitism of the root-knot nematode in leaves and stems. Phytopathology 31: 634–648.

    Google Scholar 

  • Magnusson, C. and Golinowski, W. 1991. Ultrastructural relationships of the developing syncytium induced by Heterodera schachtii (Nematoda) in root tissues of rape. Can. J. Bot. 69: 44–52.

    Google Scholar 

  • Malamy, J.E. and Benfey, P.N. 1997. Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci. 2: 390–396.

    Google Scholar 

  • Malallah, G. A., Afzal M., Attia T. A. and Abraham D. 1996. Tapetal cell nuclear characteristics of some Kuwaiti plants. Cytologia 61: 259–267.

    Google Scholar 

  • Martinez, M.C., Jørgensen, J.-E., Lawton, M.A., Lamb, C.J. and Doerner, P.W. 1992. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl. Acad. Sci. USA 89: 7360–7364.

    PubMed  Google Scholar 

  • Mathesius, U., Schlaman, H.R.M., Spaink, H.P., Sautter, C., Rolfe B.G. and Djordjevic M.A. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23–34.

    PubMed  Google Scholar 

  • McCully, M.E. 1975. The development of lateral roots. In: J.G. Torrey and D.T. Clarkson (Eds.) The Development and Function of Roots, Acadamic Press, New York, pp. 105–124.

    Google Scholar 

  • Mironov, V., De Veylder, L., Van Montagu, M. and Inzé, D. 1999. Cyclin-dependent kinases and cell division in higher plants: the nexus. Plant Cell 11: 509–521.

    PubMed  Google Scholar 

  • Morejohn, L.C., Bureau, T.E., Molè-Bajer, J., Bajer, A.S. and Fosket, D.E. 1987. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta 172: 252–264.

    Article  Google Scholar 

  • Niebel, A., de Almeida Engler, J., Hemerly, A., Ferreira, P., Van Montagu, M. and Gheysen, G. 1996. Induction of cdc2a and cyc1At expression in Arabidopsis during early phases of nematode-induced feeding cell formation. Plant J. 10: 1037–1043.

    Article  PubMed  Google Scholar 

  • Orion, D. and Minz, G. 1971. The influence of morphactin on the root-knot nematode Meloidogyne javanica and its galls. Nematologica 17: 107–112.

    Google Scholar 

  • Orum, T.V., Bartels, P.G. and McClure, M.A. 1979. Effect of oryzalin and 1,1-dimethylpiperidinium chloride on cotton and tomato roots infected with the root-knot nematode, Meloidogyne incognita. J. Nematol. 11: 78–83.

    Google Scholar 

  • Ow, D.W., Wood, K.V., De Luca, M., De Wey, J.R., Helinski, D.R. and Howell, S.H. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Proc. Natl. Acad. Sci. USA 84: 4870–4874.

    Google Scholar 

  • Paulson, R.E. and Webster, J.M. 1970. Giant cell formation in tomato roots caused by Meloidogyne incognita and Meloidog-yne hapla (Nematoda) infection. A light and electron microscope study. Can. J. Bot. 48: 271–276.

    Google Scholar 

  • Peterson, R.L. and Peterson, C.A. 1986. Ontogeny and anatomy of lateral roots. In: M.B. Jackson (Ed.) New Root Formation in Plants and Cuttings, Martinus Nijhoff, Dordrecht, Netherlands, pp. 2–30.

  • Piegat, M. and Wilski, A. 1963. Changes observed in cell nuclei in roots of susceptible and resistant potato after their invasion by potato root eelworm (Heterodera rostochiensis Woll.) larvae. Nematologica 9: 576–580.

    Google Scholar 

  • Powell, N.T. and Moore, E.L. 1961. A technique for inoculating leaves with root-knot nematodes. Phytopathology 51: 201–202.

    Google Scholar 

  • Quelle, D.E., Ashmun, A., Shurtleff, S.A., Kato, J.-Y., Bar-Sagi, D., Roussel, M. F. and Sherr, C.J. 1993. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblast. Genes. Dev. 7: 1559–1571.

    PubMed  Google Scholar 

  • Redig, P., Shaul, O., Inzé, D., Van Montagu, M. and Van Onckelen, H. 1996. Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett. 391: 175–180.

    PubMed  Google Scholar 

  • Rhiou-Khamlichi, C., Huntley, R., Jacqmard, A. and Murray, J. A. H. 1999. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541–1544.

    PubMed  Google Scholar 

  • Rice, S.L., Leadbeater, B.S.C. and Stone, A.R. 1985. Changes in cell structure in roots of resistant potatoes parasitized by potato cyst nematodes. 1. Potatoes with resistance gene H1 derived from Solanum tuberosum ssp. andigena. Physiol. Plant. Path. 27: 219–234.

    Google Scholar 

  • Richardson, L. and Price, N.S. 1984. Observations on the biology of Meloidogyne incognita and the diageotropica tomato mutant. Rev. Nematol. 7: 97–99.

    Google Scholar 

  • Rohde, R.A. and McClure, M.A. 1975. Autoradiography of developing syncytia in cotton roots infected with Meloidogyne incognita. J. Nematol. 7: 64–69.

    Google Scholar 

  • Romney, R.K., Anderson, J.L. and Griffin, G.D. 1974. Effects of DCPA on seedling infection by root-knot nematode. Weed Sci. 22: 51–54.

    Google Scholar 

  • Rosso, M.-N. Favery, B., Piotte, C., Arthaud, L., de Boer, J.M., Hussey, R.S., Bakker, J. Baum, T.J. and Abad, P. 1999. Isolation of a cDNA encoding a beta-1,4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Mol. Plant-Microbe Interact. 12: 585–591.

    PubMed  Google Scholar 

  • Rubinstein, J.H. and Owens, R.G. 1964. Thymidine and uridine incorporation in relation to the ontogeny of root-knot syncytia. Contrib. Boyce Thompson Inst. 22: 491–502.

    Google Scholar 

  • Scheres, B., Sijmons, P.C., van den Berg, C., McKhann, H., de Vrieze, G., Willemsen, V. and Wolkenfelt, H. 1997. Root anatomy and development, the basis for nematode parasitism. In: C. Fenoll, F.M.W. Grundler and S.A. Ohl (Eds.) Cellular and Molecular Aspects of Plant-Nematode Interactions, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 25–37.

    Google Scholar 

  • Segers, G., Gadisseur, I., Bergounioux, C., de Almeida Engler, J., Jacqmard, A., Van Montagu, M. and Inzé, D. 1996. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J. 10: 601–612.

    PubMed  Google Scholar 

  • Segers, G., Rouzé, P., Van Montagu, M. and Inzé, D. 1997. Cyclindependent kinases in plants. In: J.A. Bryant and D. Chiatante (Eds.) Plant Cell Proliferation and its Regulation in Growth and Development, John Wiley, Chichester, UK, pp. 1–19.

    Google Scholar 

  • Sembdner, G. 1963. Anatomie der Heterodera rostochiensis Gallen an Tomatenwurzeln. Nematologica 9: 55–64.

    Google Scholar 

  • Setty, K.G.H. and Wheeler, A.W. 1968. Growth substances in roots of tomato (Lycopersicon esculentum Mill.) infected with rootknot nematodes (Meloidogyne spp.). Ann. Appl. Biol. 61: 495–501.

    Google Scholar 

  • Shaul, O., Mironov, V., Burssens, S., Van Montagu, M. and Inzé, D. 1996. Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. Proc. Natl. Acad. Sci. USA 93: 4868–4872.

    Article  PubMed  Google Scholar 

  • Sijmons, P.C., Grundler, F.M.W., von Mende, N., Burrows, P.R. and Wyss, U. 1991. Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J. 1: 245–254.

    Google Scholar 

  • Sijmons, P.C., Atkinson, H.J. and Wyss, U. 1994a. Parasitic strategies of root nematodes and associated host cell responses. Annu. Rev. Phytopath. 32: 235–259.

    Google Scholar 

  • Sijmons, P.C., von Mende, N. and Grundler, F.M.W. 1994b. Plantparasitic nematodes. In: E.M. Meyerowitz and C.R. Somerville (Eds.) Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 749–767.

    Google Scholar 

  • Smant, G., Stokkermans, J.P.W.G., Yan, Y.T., De Boer, J.M., Baum, T.J., Wang, X.H., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of ?-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95: 4906–4911.

    Google Scholar 

  • Smit, G., de Koster, C.C., Schripsema, J., Spaink, H.P., van Brussel, A.A.N. and Kijne, J.W. 1995. Uridine, a cell division factor in pea roots. Plant Mol. Biol. 29: 869–873.

    PubMed  Google Scholar 

  • Soni, R., Carmichael, P., Shah, Z.H. and Murray, J.A.H. 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.

    Article  PubMed  Google Scholar 

  • Starr, J.L. 1993. Dynamics of the nuclear complement of giant cells induced by Meloidogyne incognita. J. Nematol. 25: 416–421.

    Google Scholar 

  • Stender, C., Glazer, I. and Orion, D. 1986. Effects of hydroxyurea on the ultrastructure of giant cells in galls induced by Meloidogyne javanica. J. Nematol. 18: 37–43.

    Google Scholar 

  • Torrey, J.G. 1986. Endogenous and exogenous influences on the regulation of lateral root formation. In: M.B. Jackson (Ed.) New Root Formation in Plants and Cuttings, Martinus Nijhoff, Dordrecht, Netherlands, pp. 32–66.

    Google Scholar 

  • Trehin, C., Planchais, S., Glab, N., Perennes, C., Tregear, J. and Bergounioux, C. 1998. Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta 206: 215–224.

    PubMed  Google Scholar 

  • Vercauteren, I., Niebel, A., Van Montagu, M. and Gheysen, G. 1995. Arabidopsis thaliana roots show an increased auxin concentration upon nematode infection. Med. Fac. Landbouwwet. Univ. Gent 60/4a: 1661–1664.

    Google Scholar 

  • Verhees, J.A., Vreugdenhil, D., van der Krol, L.A. and van de Plas, H.W. 1998. In: Proceedings of the 5th International Symposium on the Molecular Biology of the Potato, Bogensee, Germany.

  • Viglierchio, D.R. and Yu, P.K. 1965. Plant parasitic nematodes: a new mechanism for injury of hosts. Science 147: 1301–1303.

    Google Scholar 

  • Viglierchio, D.R. and Yu, P.K. 1968. Plant growth substances and plant parasitic nematodes. II. Host influence on auxin content. Exp. Parasitol. 23: 88–95.

    PubMed  Google Scholar 

  • Vovlas, N. and Troccoli, A. 1990. Histopathology of broad bean roots infected by the lesion nematode Pratylenchus penetrans. Nematol. Mediterr. 18: 239–242.

    Google Scholar 

  • Wedzony, M. 1993. Polytenization in the antipodal nuclei of wheat (Triticum aestivum L.), triticale (H. triticosecale Wittm.) and their reciprocal crosses. Acta. Biol. Cracoviensia Ser. Bot. 34– 35: 43–57.

    Google Scholar 

  • Wiggers, R., Starr, J.L. and Price, H.J. 1990. DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M. arenaria. Phytopathology 80: 1391–1395.

    Google Scholar 

  • Williamson, V.M. and Hussey, R.S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8: 1735–1745.

    PubMed  Google Scholar 

  • Wright, K.A. 1974. The feeding site and probable feeding mechanism of the parasitic nematode Capillaria hepatica (Bancroft, 1893). Can. J. Zool. 52: 1215–1220.

    PubMed  Google Scholar 

  • Wyss, U. 1992. Observations on the feeding behaviour of Heterodera schachtii throughout development, including events during moulting. Fund. Appl. Nematol. 15: 75–89.

    Google Scholar 

  • Wyss, U., Lehmann, H. and Jank-Ladwig, R. 1980. Ultrastructure of modified root-tip cells in Ficus carica [figs], induced by the ectoparasitic nematode Xiphinema index. J. Cell Sci. 41: 193–208.

    PubMed  Google Scholar 

  • Young, C.W. and Hodas, S. 1964. Hydroxyurea: inhibitory effect on DNA metabolism. Science 146: 1172–1174.

    PubMed  Google Scholar 

  • Yu, P.K. and Viglierchio, D.R. 1964. Plant growth substances and parasitic nematodes. I. Root knot nematodes and tomato. Exp. Parasitol. 15: 242–248.

    PubMed  Google Scholar 

  • Zhang, K., Letham, D.S. and John, P.C.L. 1996. Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2 like H1 histone kinase. Planta 200: 2–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goverse, A., de Almeida Engler, J., Verhees, J. et al. Cell cycle activation by plant parasitic nematodes. Plant Mol Biol 43, 747–761 (2000). https://doi.org/10.1023/A:1006367126077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006367126077

Navigation