Skip to main content
Log in

Screening Hypochromism in Molecular Aggregates and Biopolymers

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

An improved model of the screening effect is suggested. Mutual ≪shielding≫ of chromophores from light due to competition for the incident photon can take place in molecular aggregates and macromolecules. From a common point of view, it could be interpreted as in ≪interaction≫ of the absorption dipol moment transitions. Screening leads to a decrease in the extinction coefficient. The largest decrease is observed in the maximum of the absorption band. This is demonstrated with chromophores of adenine, tyrosine, tryptophan, retinol, porphyrin and anthracene. The model enables prediction of hypochromic spectra or evaluation of the quantity of chromophores in an aggregate or macromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cantor, Ch. and Shimmel, P.: Biophysical Chemistry, vol. 2. Mir, Moscow, 1984.

    Google Scholar 

  2. Terenin, A.N.: Photonics of Dye Molecules and Related Organic Compound, Nauka, Leningrad, 1967.

    Google Scholar 

  3. Weissbluth, M.: Hypochromism, Quart. Rev. Biophys. 4 (1971), 1–34.

    Google Scholar 

  4. Duysens, L.N.M.: The flattening of the absorption spectrum of suspensions, as compared to that of solutions, Biochim. Biophys. Acta 19 (1956), 1–12.

    Google Scholar 

  5. Tinoco, I.: Hypochromism in polynucleotides, J. Am. Chem. Soc. 82 (1960), 4785–4790.

    Google Scholar 

  6. Bolton, H.C. and Weiss, J.J.: Hypochromism in the ultra-violet absorption of nucleic acids and related structures, Nature 195 (1962), 666–668.

    Google Scholar 

  7. Nesbet, R.K.: Theory of hypochromism, Mol. Phys. 7 (1964), 211–221.

    Google Scholar 

  8. Bullough, R.K.: Complex refractive index and a two-band model in the theory of hypochromism, J. Chem. Phys. 48 (1968), 3712–3722.

    Google Scholar 

  9. De Voe, H.: Optical properties of molecular aggregates; classical model of electronic absorption and refraction, J. Chem. Phys. 41 (1964), 393–400.

    Google Scholar 

  10. Fowler, G.N.: On the theory of hypochromism, Mol. Phys. 11 (1966), 31–36.

    Google Scholar 

  11. Rodes, W.: Hypochromism and other spectral properties of helical polynucleotides, J. Am. Chem. Soc. 83 (1961), 3609–3617.

    Google Scholar 

  12. Garcia-Rubio, L.H.: The effect of molecular size on the absorption spectra of macromolecules, Macromolecules 20 (1987), 3070–3075.

    Google Scholar 

  13. Steinberg, I.Z. and Anglister, J.: Light scattering by chromophores at their absorption bands, Ann. N.-Y. Acad. Sci. 366 (1981), 125–139.

    Google Scholar 

  14. Fukshansky, L.: Absorption statistics in turbid media, J. Quant. Spectrosc. Radiat. Transfer 38 (1987), 389–406.

    Google Scholar 

  15. Papageorgiou, G.: Absorption of light by non-refractive spherical shells, J. Theor. Biol. 30 (1971), 249–254.

    Google Scholar 

  16. Bell, L.N.: Peculiarities of absorption spectroscopy of biological objects, Biofizika 10 (1965), 374–385.

    Google Scholar 

  17. Vekshin, N.L.: Screening hypochromism in chromophore stacks, Optika i Spectroscopiya 63 (1987), 517–519.

    Google Scholar 

  18. Bakhshiev, N.G.: Spectroscopy of Inter-molecular Interactions, Nauka, Leningrad, 1972.

    Google Scholar 

  19. Seyama, F., Akahori, K., Sakata, Y., Misumi, S., Aida, M. and Nagata, C.: Synthesis and properties of purinophanes: relationship between the magnitude of hypochromism and stacking geometry of purine rings, J. Am. Chem. Soc. 110 (1988), 2192–2201.

    Google Scholar 

  20. Dvorkin, G.A. and Krinskii, V.I.: Absorption of light in a solution of DNA oriented by electric field, Dokladi Academii Nauk USSR 140 (1961), 942–945.

    Google Scholar 

  21. Neporent, B.S. and Bakhshiev, N.G.: Intensities in spectra of polyatomic molecules, Optika i Spectroscopiya 5 (1958), 634–645.

    Google Scholar 

  22. Wada, A.: Dichroic spectra of biopolymers oriented by flow, Appl. Spectr. Rev. 6 (1972), 1–30.

    Google Scholar 

  23. Gillespie, R.J. and Hargittai, I.: The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston, 1991.

    Google Scholar 

  24. Antipin, M.Yu.: Low-temperature X-ray analysis: possibilities in resolution of chemical problems, Uspehi Chimii 59 (1990), 1052–1084.

    Google Scholar 

  25. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1984.

    Google Scholar 

  26. Brahms, J., Michelson, A.M. and Van Holde, K.E.: Adenylate oligomers in single-and doublestrand conformation, J. Mol. Biol. 15 (1966), 467–488.

    Google Scholar 

  27. Leng, M. and Felsenfeld, G.: A study of polyadenylic acid at neutral pH, J. Mol. Biol. 15 (1966), 455–465.

    Google Scholar 

  28. Gueron, M., Eisinger, J. and Lamola, A.A.: Excited states of nucleic acids, In: O.P. Ts'o (ed.), Basic Principles in Nucleic Acid Chemistry, Vol. 1, Academic Press, New York, 1974, pp. 352–371.

    Google Scholar 

  29. Sarma, R.H. (ed.), Nucleic Acid Geometry and Dynamics, Pergamon Press, New York, 1980.

    Google Scholar 

  30. Morcillo, J., Gallego, E. and Peral, F.: A critical study of the application of ultraviolet spectroscopy to the self-association of adenine, adenosine and 5'-AMP in aqueous solution, J. Mol. Struct. 157 (1987), 353–369.

    Google Scholar 

  31. Vekshin, N.L., Vincent, M. and Gallay, J.: Tyrosine hypochromism and absence of tyrosinetryptophan energy transfer in phospholipase A2 and ribonuclease T1, Chem. Phys. 171 (1993), 231–236.

    Google Scholar 

  32. Urry, D.W. and Pettegrew, J.W.: Model systems for interacting heme moieties: the ferriheme octapeptide of cytochrome c, J. Am. Chem. Soc. 89 (1967), 5276–5283.

    Google Scholar 

  33. Alpern, M., Fulton, A.B. and Baker, B.N.: Self-screening of rhodopsin in rod outer segments, Vision Res. 27 (1987), 1459–1470.

    Google Scholar 

  34. Pearlstein, R.M.: Singlet excitones in photosynthetic systems, In: Govinjee (ed.), Photosynthesis, Vol. 1, Mir, Moscow, 1987, pp. 421–470.

    Google Scholar 

  35. Latimer, P.: The deconvolution of absorption spectra of green plant materials - improved corrections for the sieve effect, Photochem. Photobiol. 38 (1983), 731–734.

    Google Scholar 

  36. Fukshansky, L., Martinez-Remisovsky, A., McClendon, J., Ritterbusch, A., Richter, T. and Mohr, H.: Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment, Photochem. Photobiol. 57 (1993), 538–555.

    Google Scholar 

  37. Durfee, W.S., Storck, W., Willig, F. and von Frieling, M.: Davydov splitting in 7-(2-anthryl)-1-heptanoic acid Langmuir-Blodgett Films, J. Am. Chem. Soc. 109 (1987), 1297–1301.

    Google Scholar 

  38. Chandross, E.A., Ferguson, J. and McRae, E.G.: Absorption and emission spectra of anthracene dimers, J. Chem. Phys. 45 (1966), 3546–3564.

    Google Scholar 

  39. Kozel, S.P. and Lashkov, G.I.: Luminescence studies of bi-molecular processes in solutions of anthracene-contained polymers with polymethyl-methacrylate, In: Excited Molecules: Kinetics of Conversions, 1982, pp. 188–201.

  40. Vekshin, N.L.: Energy Transfer in Macromolecules, SPIE, Bellingham, 1997.

    Google Scholar 

  41. Vekshin, N.L.: Photonics of Biopolymers, MGU Press, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vekshin, N. Screening Hypochromism in Molecular Aggregates and Biopolymers. Journal of Biological Physics 25, 339–354 (1999). https://doi.org/10.1023/A:1005178700426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005178700426

Navigation