Skip to main content
Log in

Aggregation of photosensitizers: the role of dispersion and solvation on dimer formation energetics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A detailed account for the dimer formation energetics is computed for two commonly used photosensitizers: metal-free phthalocyanine (Pc) and methylene blue (MB), a cationic phenothiazine. Gas-phase calculations were performed using the density functional theory augmented with dispersion corrections using both the dispersion-correcting atom-centred potentials and the D2/D3 methods. SCS-MP2/CBS results were also provided for comparison. Hydration free energies were determined using continuum methodologies: namely the conductor-like polarizable continuum model, the solvation model density and a reparametrized version of the polarizable continuum model. For methylene blue, the Langevin dipole model was also used. Our results showed that the nature of aggregation is remarkably different for these two molecules, being dispersion driven for Pc while solvent driven for MB. For water and ethanol our results are in good agreement with the experimental data available for MB. We also provide quantitative estimates to the popular explanation put out by Mukerjee and Ghosh more than 40 years ago that aggregation arises from solvent entropic and inter-species enthalpic contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Foote CS (1968) Science 162:963–970

    Article  CAS  Google Scholar 

  2. Dolmans D, Fukumura D, Jain RK (2003) Nat Rev Cancer 3:380–387

    Article  CAS  Google Scholar 

  3. Ochsner M (1997) Arzneimittelforschung 47:1185–1194

    CAS  Google Scholar 

  4. Robertson CA, Evans DH, Abraharnse H (2009) J Photochem Photobiol B 96:1–8

    Article  CAS  Google Scholar 

  5. Sharman WM, Allen CM, van Lier JE (1999) Drug Discov Today 4:507–517

    Article  CAS  Google Scholar 

  6. Wainwright M (2009) Photosensitizers in biomedicine. Wiley, West Sussex

    Book  Google Scholar 

  7. Bonnett R (1995) Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  8. Bristow CA, Hudson R, Paget TA, Boyle RW (2006) Photodiagn Photodyn 3:162–167

    Article  CAS  Google Scholar 

  9. Brown SB, Brown EA, Walker I (2004) Lancet Oncol 5:497–508

    Article  CAS  Google Scholar 

  10. Harris F, Sayed Z, Hussain S, Phoenix DA (2004) Photodiagn Photodyn 1:231–239

    Article  CAS  Google Scholar 

  11. Hussain S, Harris F, Phoenix DA (2006) Fems Immun Med Microbiol 46:124–130

    Article  CAS  Google Scholar 

  12. Mellish KJ, Cox RD, Vernon DI, Griffiths J, Brown SB (2002) Photochem Photobiol 75:392–397

    Article  CAS  Google Scholar 

  13. Palma M, Cardenas-Jiron GI, Rodriguez MIM (2008) J Phys Chem A 112:13574–13583

    Article  CAS  Google Scholar 

  14. Sugita N, Kawabata KI, Sasaki K, Sakata I, Umemura S (2007) Bioconjug Chem 18:866–873

    Article  CAS  Google Scholar 

  15. Teichert MC, Jones JW, Usacheva MN, Biel MA (2002) Oral Surg Oral Med Oral Pathol 93:155–160

    Article  CAS  Google Scholar 

  16. Wainwright M (2003) Biotec Histochem 78:147–155

    Article  CAS  Google Scholar 

  17. Wainwright M, Giddens RM (2003) Dyes Pigments 57:245–257

    Article  CAS  Google Scholar 

  18. Ochsner M (1997) J Photochem Photobiol B 39:1–18

    Article  CAS  Google Scholar 

  19. Yao P, Han SH, Zhang YX, Zhang XY, Jiang JZ (2009) Vib Spectrosc 50:169–177

    Article  CAS  Google Scholar 

  20. Petit L, Adamo C, Russo N (2005) J Phys Chem B 109:12214–12221

    Article  CAS  Google Scholar 

  21. Petit L, Quartarolo AD, Adamo C, Russo N (2006) J Phys Chem B 110:2398–2404

    Article  CAS  Google Scholar 

  22. Quartarolo AD, Russo N, Sicilia E, Lelj F (2007) J Chem Theory Comput 3:860–869

    Article  CAS  Google Scholar 

  23. Eriksson ESE, Eiksson LA (2011) Phys Chem Chem Phys 13:7207–7217

    Article  CAS  Google Scholar 

  24. Eriksson ESE, Eiksson LA (2011) Phys Chem Chem Phys 13:11590–11596

    Article  CAS  Google Scholar 

  25. Alberto ME, De Simone BC, Mazzone G, Marino T, Russo N (2015) Dyes Pigments 120:335–339

    Article  CAS  Google Scholar 

  26. Homem-de-Mello P, Mennucci B, Tomasi J, da Silva ABF (2007) Theor Chem Acc 118:305–314

    Article  CAS  Google Scholar 

  27. Soneta Y, Miyamura K, Chem B (2006) Soc Jpn 79:282–287

    Article  CAS  Google Scholar 

  28. Chai WX, Lin J, Song L, Qin LS, Shi HS, Guo JY, Shu KY (2012) Solid State Sci 14:1226–1232

    Article  CAS  Google Scholar 

  29. Gilani AG, Salmanpour M, Ghorbanpour T (2013) J Mol Liq 179:118–123

    Article  CAS  Google Scholar 

  30. Ghosh AK (1970) J Am Chem Soc 92:6408–6412

    Article  Google Scholar 

  31. Mukerjee P, Ghosh AK (1970) J Am Chem Soc 92:6419–6424

    Article  CAS  Google Scholar 

  32. Martinez CR, Iverson BL (2012) Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  33. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem Theory Comput 8:2835–2843

    Article  CAS  Google Scholar 

  34. Chen Z, Lohr A, Saha-Moller CR, Wurthner F (2009) Chem Soc Rev 38:564–584

    Article  CAS  Google Scholar 

  35. Rodrigues GB, Dias-Baruffi M, Braga GUL, Holman N, Wainwright M (2013) Photodiagn Photodyn 10:141–149

    Article  CAS  Google Scholar 

  36. Wainwright M, Meegan K, Loughran C (2011) Dyes Pigments 91:1–5

    Article  CAS  Google Scholar 

  37. Yazdani O, Irandoust M, Ghasemi JB, Hooshmand S (2012) Dyes Pigments 92:1031–1041

    Article  CAS  Google Scholar 

  38. Severino D, Junqueira HC, Gugliotti M, Gabrielli DS, Baptista MS (2003) Photochem Photobiol 77:459–468

    Article  CAS  Google Scholar 

  39. Junqueira HC, Severino D, Dias LG, Gugliotti M, Baptista MS (2002) Phys Chem Chem Phys 4:2320–2328

    Article  CAS  Google Scholar 

  40. Liska M, Bartos L, Valasek J (1989) Chem Pap 43:303–313

    CAS  Google Scholar 

  41. Fornili SL, Sgroi G, Izzo V (1983) J Chem Soc Faraday Trans 1(79):1085–1090

    Article  Google Scholar 

  42. Verdree VT, Pakhomov S, Su G, Allen MW, Countryman AC, Hammer RP, Soper SA (2007) J Fluoresc 17:547–563

    Article  CAS  Google Scholar 

  43. Kobayashi M, Kigawa Y, Satoh K, Sawada K (2012) J Porphyr Phthalocya 16:183–191

    Article  CAS  Google Scholar 

  44. Shirai H, Kobayashi N (1997) Phthalocyanines: chemistry and applications. IPC, Tokyo

    Google Scholar 

  45. Hirohashi R, Sakamoto K, Okumura E (2004) Phthalocyanines as functional dyes: basics and applications. IPC, Tokyo

    Google Scholar 

  46. Attwood D (1995) Adv Colloid Interface 55:271–303

    Article  CAS  Google Scholar 

  47. Cabral BJC, Cruzeiro VWD, Coutinho K, Canuto S (2014) Chem Phys Lett 595–596:97–102

    Article  Google Scholar 

  48. Lin IC, Coutinho-Neto MD, Felsenheimer C, von Lilienfeld OA, Tavernelli I, Rothlisberger U (2007) Phys Rev B 75:205131–205136

    Article  Google Scholar 

  49. Grimme S (2004) J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  50. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  51. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  52. Lin I-C, von Lilienfeld OA, Coutinho-Neto MD, Tavernelli I, Rothlisberger U (2007) J Chem Phys B 111(51):14346–14354

    Article  CAS  Google Scholar 

  53. Lin I-C, Rothlisberger U (2008) Phys Chem Chem Phys 10:2730–2734

    Article  CAS  Google Scholar 

  54. Antony J, Grimme S (2006) Phys Chem Chem Phys 8:5287–5293

    Article  CAS  Google Scholar 

  55. CPMD, Carr Parrinello Molecular Dynamics, (2008) Copyright IBM Corp 1990–2008/Copyright MPI fur Fertkorperforschung Stuttgart 1997–2001. http://www.cpmd.org

  56. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  57. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  58. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  59. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  60. Neese F, Valeev EF (2010) J Chem Theory Comput 7(1):33–43

    Article  Google Scholar 

  61. Neese F (2012) WIREs Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  62. Grimme S (2003) J Chem Phys 118:9095–9102

    Article  CAS  Google Scholar 

  63. Riley KE, Platts JA, Řezác J, Hobza P, Hill JG (2012) J Phys Chem A 116:4159–4169

    Article  CAS  Google Scholar 

  64. Bachorz RA, Bischoff FA, Höfener S, Klopper W, Ottiger P, Leist R, Frey JA, Leutwyler S (2008) Phys Chem Chem Phys 10:2758–2766

    Article  CAS  Google Scholar 

  65. Ben-Naim A (2006) Molecular theory of solutions. Oxford University Press Inc., New York

    Google Scholar 

  66. Shivakumar D, Deng YQ, Roux B (2009) J Chem Theory Comput 5:919–930

    Article  CAS  Google Scholar 

  67. Cramer CJ (2004) Essentials of computational chemistry. Wiley, West Sussex

    Google Scholar 

  68. Andzelm J, Kolmel C, Klamt A (1995) J Chem Phys 103:9312–9320

    Article  CAS  Google Scholar 

  69. Barone V, Cossi M (1998) J Phys Chem 102:1995–2001

    Article  CAS  Google Scholar 

  70. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  71. Klamt A, Schüürmann G (1993) J Chem Soc 2:799–805

    Google Scholar 

  72. Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  73. Shimizu K, Freitas AA, Farah JPS, Dias LG (2005) J Phys Chem A 109:11322–11327

    Article  CAS  Google Scholar 

  74. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  75. Florián J, Warshel A (1999) J Phys Chem B 103:10282–10288

    Article  Google Scholar 

  76. Florian J, Warshel A (1997) J Phys Chem B 101:5583–5595

    Article  CAS  Google Scholar 

  77. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven JAT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford, CT

    Google Scholar 

  78. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  79. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  80. Mantina M, Valero R, Cramer CJ, Truhlar DG (2010) In: Haynes WM (ed) CRC handbook of chemistry and physics, 91st edition (2010–2011). CRC Press, Boca Raton, FL, pp 9-49–9-50

    Google Scholar 

  81. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  82. Parrinello M, Rahman A (1981) J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  83. Bussi G, Donadio D, Parrinello M (2007) J Chem Phys 126:014101–014107

    Article  Google Scholar 

  84. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  85. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  86. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  87. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Dordrecht, Reidel

    Google Scholar 

  88. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  89. Lindahl E, Hess B, van Der Spoel BD (2001) J Mol Model 7:306–317

    CAS  Google Scholar 

  90. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  91. Scrocco E (1979) J Tomasi Adv Quantum Chem 11:115–193

    Article  Google Scholar 

  92. Löwdin P (2007) Adv Chem Phys 2:207–322

    Google Scholar 

  93. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  94. Uhlig HH (1937) J Phys Chem 41:1215–1226

    Article  CAS  Google Scholar 

  95. Eley DD (1939) Trans Faraday Soc 35:1281–1293

    Article  CAS  Google Scholar 

  96. Pierotti RA (1976) Chem Rev 76:717–726

    Article  CAS  Google Scholar 

  97. Irudayam SB, Henchman RH (2011) Mol Phys 109:37–48

    Article  CAS  Google Scholar 

  98. Beck TL (2011) J Phys Chem B 115:9776–9781

    Article  CAS  Google Scholar 

  99. Ambrosetti A, Alfè D, DiStasio RA Jr, Tkatchenko A (2014) J Phys Chem Lett 5:849–855

    Article  CAS  Google Scholar 

  100. Goerigk L, Kruse H, Grimme S (2011) Chem Phys Chem 12:3241

    Google Scholar 

  101. Risthaus T, Grimme S (2013) J Chem Theory Comput 9:1580–1591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Mauricio S. Baptista and Rosangela Itri for insightful discussions, the Brazilian agencies Fundação de Apoio à Pesquisa do Estado de São Paulo—FAPESP (2012/50680-5, 2010/19790-3) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (310669/2013-8) for their financial support and Centro Nacional de Processamento de Alto Desempenho em São Paulo—CENAPAD for its computational facilities. Cleiton Domingos Maciel would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES/PNPD program for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauricio Domingues Coutinho-Neto or Paula Homem-de-Mello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bettanin, F., de Carvalho Fontinelles, T.A., Maciel, C.D. et al. Aggregation of photosensitizers: the role of dispersion and solvation on dimer formation energetics. Theor Chem Acc 134, 152 (2015). https://doi.org/10.1007/s00214-015-1732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1732-5

Keywords

Navigation