Skip to main content
Log in

Probing Quantum Violations of the Equivalence Principle

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The joint realm of quantum mechanics and general-relativistic description of gravitation is becoming increasingly accessible to terrestrial experiments and observations. In this essay we study the emerging indications of the violation of equivalence principle (VEP). While the solar neutrino anomaly may find its natural explanation in a VEP, the statistically significant discrepancy observed in the gravitationally induced phases of neutron interferometry seems to be the first indication of a VEP. However, such a view would seem immediately challenged by the atomic interferometry results. The latter experiments see no indications of VEP, in apparent contradiction to the neutron interferometry results. Here we show that these, and related torsion pendulum experiments, probe different aspects of gravity; and that current experimental techniques, when coupled to the solar-neutrino data, may be able to explore quantum mechanically induced violations of the equivalence principle. We predict quantum violation of the equivalence principle (qVEP) for next generation of atomic interferometry experiments. The prediction entails comparing free fall of two different linear superpositions of Cesium atomic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474.

    Google Scholar 

  2. Amelino-Camelia, G. (1999). Gravity-wave interferometers as quantum-ravity detectors. Nature 398, 216–218.

    Google Scholar 

  3. Ahluwalia, D. V. (1999). Quantum Gravity: Testing time for theories. Nature 398, 199–200.

    Google Scholar 

  4. Alfaro, J., Morales-Técotl, H. A., and Urrutia, L. (2000). Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 84, 2318–2321.

    Google Scholar 

  5. Fogli, G. L., Lisi, E., Marrone, A., and Scioscia, G. (1999). Phys. Rev. D. 60, 053006[1–9].

    Google Scholar 

  6. Lisi, E., Marrone, A., and Mantanino, D. (2000). Probing quantum gravity effects in atmospheric neutrino oscillations. Lanl archive preprint: hep-ph/0002053.

  7. Baebler, S. et al. (1999). Phys. Rev. Lett. 83, 3585–3588.

    Google Scholar 

  8. Fischbach, E. and Krause, D. E. (1999). New limits on the coupling of light pseudoscalars from equivalence principle experiments. Phys. Rev. Lett. 82, 4753–4756 (1999).

    Google Scholar 

  9. Hambye, T., Mann, R. B., and Sarkar, U. (1998). Tests of special relativity and equivalence principle from K physics. Phys. Rev. D. 58, 025003[1–8].

    Google Scholar 

  10. Viola, L. and Onofrio, R. (1997). Testing equivalence principle through freely falling quantum objects. Phys. Rev. D 55, 455–462.

    Google Scholar 

  11. Smith, G. L. et al. (2000). Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001.

    Google Scholar 

  12. Peters, A., Chung, K. Y., and Chu, S. (1999). Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–82.

    Google Scholar 

  13. Littrel, K. C., Allman, B. E., and Werner, S. A. (1997). Two-wavelength-difference measurement of gravitationally induced quantum interference phases. Phys. Rev. A 56, 1767–1780.

    Google Scholar 

  14. Ahluwalia, D. V. (1997). On a new non-geometric element in gravity. Gen. Rel. Grav. 29, 1491–1501.

    Google Scholar 

  15. Ahluwalia, D. V. and Burgard, C. (1996). Gravitationally induced neutrino-oscillation phases. Gen. Rel. Grav. 28, 1161–1170. Erratum 29, 681 (1997).

    Google Scholar 

  16. Ahluwalia, D. V. and Burgard, C. (1998). Interplay of gravitation and linear superposition of different mass eigenstates. Phys. Rev. D 57, 4724–4727.

    Google Scholar 

  17. Konno, K. and Kasai, M. (1998). General relativistic effects of gravity in quantum mechanics: a case of ultra-relativistic, spin 1/2 particles. Prog. Theor. Phys. 100, 1145–1157.

    Google Scholar 

  18. Grossman, Y. and Lipkin, H. J. (1997). Flavor oscillations from a spatially localized source: a simple general treatment. Phys. Rev. D 55, 2760–2767.

    Google Scholar 

  19. Camacho, A. (1999). Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle. Mod. Phys. Lett. A 14, 2245–2556.

    Google Scholar 

  20. Gasperini, M. (1988). Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635–2637.

    Google Scholar 

  21. Gasperini, M. (1989). Experimental constraints on a minimal and nonminimal violation of the equivalence principle in oscillations of massive neutrinos. Phys. Rev. D 39, 3606–3611.

    Google Scholar 

  22. Gago, A. M., Nunokawa, H., and Zukanovich Funchal, R. (1999). preprint: hep-ph/9909250.

  23. Mansour, S. W. and Kuo, T. K. (1999). Solar neutrinos and violations of equivalence principle. Phys. Rev. D 60, 097301.

    Google Scholar 

  24. Mureika, J. R. (1997). An investigation of equivalence principle violations using solar neutrino oscillations in a constant gravitational potential. Phys. Rev. D 56, 2408–2418.

    Google Scholar 

  25. Halprin, A., Leung, C. N., and Pantaleone, J. (1996). A possible violation of a equivalence principle by neutrinos. Phys. Rev. D 53, 5365–5376.

    Google Scholar 

  26. Steinberg, A. M., Kwait, P. G., and Chaio, R. Y. (1993). Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711.

    Google Scholar 

  27. Steinberg, A. M. et al. (1998). An atom optics experiment to investigate faster-than-light tunneling. Ann. Phys. (Leipzig) 7, 593–601.

    Google Scholar 

  28. Olum, K. D. (1998). Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567–3570.

    Google Scholar 

  29. Nimtz, G. (1998). Superluminal signal velocity. Ann. Phys. (Leipzig) 7, 618 (1998).

    Google Scholar 

  30. Aharonov, Y., Reznik, B., and Stern, A. (1998). Quantum limitations on superluminal propagation. Phys. Rev. Lett. 81, 2190–2193.

    Google Scholar 

  31. Polchinski, J., Susskind, L., and Toumbas, N. (1999). Negative energy, superluminosity, and holography. Phys. Rev. D. 60, 094006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adunas, G.Z., Rodriguez-Milla, E. & Ahluwalia, D.V. Probing Quantum Violations of the Equivalence Principle. General Relativity and Gravitation 33, 183–194 (2001). https://doi.org/10.1023/A:1002749217269

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002749217269

Navigation