Skip to main content
Log in

Oxidative metabolism of inorganic sulfur compounds by bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The history of the elucidation of the microbiology and biochemistry of the oxidation of inorganic sulfur compounds in chemolithotrophic bacteria is briefly reviewed, and the contribution of Martinus Beijerinck to the study of sulfur-oxidizing bacteria highlighted. Recent developments in the biochemistry, enzymology and molecular biology of sulfur oxidation in obligately and facultatively lithotrophic bacteria are summarized, and the existence of at least two major pathways of thiosulfate (sulfur and sulfide) oxidation confirmed. These are identified as the ‘Paracoccus sulfur oxidation’ (or PSO) pathway and the ‘S4intermediate’ (or S4I) pathway respectively. The former occurs in organisms such as Paracoccus (Thiobacillus) versutus and P. denitrificans, and possibly in Thiobacillus novellus and Xanthobacter spp. The latter pathway is characteristic of the obligate chemolithotrophs (e.g. Thiobacillus tepidarius, T. neapolitanus, T. ferrooxidans, T. thiooxidans) and facultative species such as T. acidophilus and T. aquaesulis, all of which can produce or oxidize tetrathionate when grown on thiosulfate. The central problem, as yet incompletely resolved in all cases, is the enzymology of the conversion of sulfane-sulfur (as in the outer [S-] atom of thiosulfate [-S-SO3-]), or sulfur itself, to sulfate, and whether sulfite is involved as a free intermediate in this process in all, or only some, cases. The study of inorganic sulfur compound oxidation for energetic purposes in bacteria (i.e. chemolithotrophy and sulfur photolithotrophy) poses challenges for comparative biochemistry. It also provides evidence of convergent evolution among diverse bacterial groups to achieve the end of energy-yielding sulfur compound oxidation (to drive autotrophic growth on carbon dioxide) but using a variety of enzymological systems, which share some common features. Some new data are presented on the oxidation of 35S-thiosulfate, and on the effect of other anions (selenate, molybdate, tu ngstate, chromate, vanadate) on sulfur compound oxidation, including observations which relate to the roles of polythionates and elemental sulfur as intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beffa T, Berczy M & Aragno M (1991) Chemolithoautotrophic growth on elemental sulfur (S°) and respiratory oxidation of S° by Thiobacillus versutus and another sulfur-oxidizing bacterium. FEMS Microbiol. Lett. 84: 285–290

    Google Scholar 

  • Beffa T, Fischer C & Aragno M (1992) Respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus tepidarius (type strain). Arch. Microbiol. 158: 456–458

    Google Scholar 

  • Beffa T, Fischer C & Aragno M (1993) Growth and respiratory oxidation of reduced sulfur compounds by intact cells of Thiobacillus novellus (type strain) grown on thiosulfate. Curr. Microbiol. 26: 323–326

    Google Scholar 

  • Beggiato FS (1838) Memoria della terme Euganee. Padua

  • Beijerinck MW (1904a) Ueber die Bakterien, welche sich im Dunkeln mit Kohlensäure als Kohlenstoffquelle ernähren können. Centralbl. Bakteriol. Abt. II 11: 593–599

    Google Scholar 

  • Beijerinck MW (1904b) Phénomènes de réduction par les microbes. Arch. Neer. Sci. (Sect. 2) 9: 131–157

    Google Scholar 

  • Beijerinck MW & Minkman DC (1910) Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralbl. Bakteriol. Abt. II 25: 30–63

    Google Scholar 

  • Cammack R, Chapman A, Lu W-P, Karagouni A & Kelly DP (1989) Evidence that protein B of the thiosulphate-oxidizing system of Thiobacillus versutus contains a binuclear manganese cluster. FEBS Lett. 253: 239–243

    Google Scholar 

  • Chandra TS & Friedrich CG (1986) Tn5-induced mutations affecting sulfur-oxidizing ability (Sox) of Thiosphaera pantotropha. J. Bacteriol. 166: 446–452

    Google Scholar 

  • Cohn F (1865) Zwei neue Beggiatoen. Hedwigia 4: 81–84

    Google Scholar 

  • Ehrenberg C (1830) Neue Beobachtungen über blutartige Erscheinungen in Ägypten, Arabien und Siberien, nebst einer Übersicht und Kritik der früher bekannten. Annal. Phys. Chem. 18: 477–514

    Google Scholar 

  • Fersht A (1985) Enzyme structure and function, 2nd ed. WH Freeman & Co, New York Friedrich CG & Mitrenga G (1981) Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol. Lett. 10: 209–212

    Google Scholar 

  • Friedrich CG, Meyer, O & Chandra TS (1986) Molybdenum-dependent sulfur oxidation in facultatively lithoautotrophic thiobacteria. FEMS Microbiol. Lett. 37: 105–108

    Google Scholar 

  • Jordan SL, Kraczkiewicz-Dowjat, Kelly DP & Wood AP (1995) Novel eubacteria able to grow on carbon disulfide. Arch. Microbiol. 163: 131–137

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil. Trans. Roy. Soc. Lond. B298: 499–528

    Google Scholar 

  • — (1985) Physiology of the thiobacilli: elucidating the sulphur oxidation pathway. Microbiol. Sci. 2: 105–109

    Google Scholar 

  • — (1988) Oxidation of sulphur compounds. Soc. Gen. Microbiol. Symp. 42: 65–98

    Google Scholar 

  • — (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Biology of autotrophic bacteria (Schlegel HG & Bowien B eds) pp 193–217. Science Tech Publishers, Madison, Wisconsin

    Google Scholar 

  • — (1990) Energetics of chemolithotrophic bacteria. In: Bacterial energetics (Krulwich TA ed) pp 479–503. Academic Press, San Diego.

    Google Scholar 

  • Kelly DP & Syrett PJ (1966) [35S]Thiosulphate oxidation by Thiobacillus strain C. Biochem. J. 98: 537–545

    Google Scholar 

  • Kelly DP and Tuovinen OH (1975) Metabolism of inorganic sulphur compounds by Thiobacillus ferrooxidans and some comparative studies on Thiobacillus A2 and T. neapolitanus. Plant & Soil 43: 77–93

    Google Scholar 

  • Kelly DP & Wood AP (1994a) Synthesis and determination of thiosulfate and polythionates. Methods in Enzymology 243: 475–501

    Google Scholar 

  • — (1994b) Enyzmes involved in the microbiological oxidation of thiosulfate and polythionates. Methods in Enzymology 243: 501–510

    Google Scholar 

  • — (1994c) Whole organism methods for inorganic sulfur oxidation by chemo-and photo-lithotrophs. Methods in Enzymology 243: 510–520

    Google Scholar 

  • Kelly DP, Lu W-P & Poole RK (1993a) Cytochromes in Thiobacillus tepidarius and the respiratory chain involved in the oxidation of thiosulphate and tetrathionate. Arch. Microbiol. 160: 87–95

    Google Scholar 

  • Kelly DP, Malin G & Wood AP (1993b) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Microbial growth on C1 compounds (Murrell JC & Kelly DP (Eds.), pp. 47–63. Intercept, Andover

    Google Scholar 

  • Kluyver AJ & Donker HJL (1926) Die Einheit in der Biochemie. Chemie Zelle Gewebe 13: 134–190

    Google Scholar 

  • Kraczkiewicz-Dowjat AJ & Kelly DP (1985) Isolation and partial characterization of mutants of Thiobacillus versutus deficient in autotrophic metabolism. Microbios 44: 185–199

    Google Scholar 

  • Lu W-P, & Kelly DP (1983) Purification and some properties of two principal enzymes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus A2. J. Gen. Microbiol. 129: 3549–3564

    Google Scholar 

  • — (1984a) Properties and role of sulphite cytochrome c oxido-reductase purified from Thiobacillus versutus (A2). J. Gen.Microbiol. 130: 1683–1692

  • — (1984b) Purification and characterization of two essential cytochromes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus A2 (Thiobacillus versutus). Biochim. Biophys. Acta 765: 106–117

  • — (1988a) Chemolithotrophic ATP synthesis and NAD(P) reduction in Thiobacillus tepidarius and T. versutus. Arch. Microbiol. 149: 303–307

  • — (1988b) Cellular location and partial purification of the ‘thiosulphate-oxidizing enzyme’ and ‘trithionate hydrolase’ from Thiobacillus tepidarius. J. Gen. Microbiol. 134: 877–885

  • Lu W-P, Poole RK & Kelly DP (1984) Oxidation-reduction potentials and spectral properties of some cytochromes from Thiobacillus versutus (A2). Biochim. Biophys. Acta 767: 326–334

    Google Scholar 

  • Lu W-P, Swoboda BEP & Kelly DP (1985) Properties of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus versutus. Biochim. Biophys. Acta 828: 116–122

    Google Scholar 

  • Meulenberg R, Pronk JT, Frank J, Hazeu W, Bos P & Kuenen JG (1992) Purification and partial characterization of a thermostable trithionate hydrolase from the acidophilic sulphur oxidizer Thiobacillus acidophilus. Eur. J. Biochem. 209: 367–374

    Google Scholar 

  • Meulenberg R, Scheer EJ, Pronk JT, Hazeu W, Bos P & Kuenen JG (1993) Metabolism of tetrathionate in Thiobacillus acidophilus. FEMS Microbiol. Lett. 112: 167–172

    Google Scholar 

  • Mittenhuber G, Sonomoto K, Egert M & Friedrich CG (1991) Identification of the DNA region responsible for sulfur-oxidizing ability in Thiosphaera pantotropha. J. Bacteriol. 173: 7340–7344

    Google Scholar 

  • Nathansohn A (1902) Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. zool. Stn. Neapel 15: 655–680

    Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P & Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol. Rev. 75: 293–306

    Google Scholar 

  • Schneider A & Friedrich CG (1994) Sulfide dehydrogenase is identical with the soxB protein of the thiosulfate-oxidizing enzyme system of Paracoccus denitrificans GB17. FEBS Lett. 350: 61–65

    Google Scholar 

  • Steudel R, Holdt G, Göbel T & Hazeu W (1987) Chromatographic separation of higher polythionates SnO6 2− (n = 3... 22) and their detection in cultures of Thiobacillus ferrooxidans: molecular composition of bacterial sulfur secretions. Ang. Chem. 26: 151–153

    Google Scholar 

  • Takakuwa S (1992) Biochemical aspects of microbial oxidation of inorganic sulfur compounds. In: Organic sulfur chemistry: biochemical aspects (Oae S & Okuyama T (Eds.), pp. 1–43. CRC Press, Boca Raton

    Google Scholar 

  • Tamiya H, Haga K & Huzisige H (1941) Zur Physiologie der chemoautotrophen Schwefelbakterien. I. Acta Phytochim., Tokyo 12: 173–225

    Google Scholar 

  • Tan J & Cowan JA (1990) Coordination and redox properties of a novel triheme cytochrome from Desulfovibrio vulgaris (Hilden-borough). Biochem. 29: 4886–4892

    Google Scholar 

  • Trudinger PA (1964) Evidence for a four-sulphur intermediate in thiosulphate oxidation by Thiobacillus X. Aust. J. Biol. Sci. 17: 577–579

    Google Scholar 

  • van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3: 1–112

    Google Scholar 

  • — (1936) On the metabolism of the Thiorhodaceae. Arch. Mikrobiol. 7: 323–358

    Google Scholar 

  • Vishniac W & Santer M (1957) The thiobacilli. Bacteriol. Rev. 21: 195–213

    Google Scholar 

  • Winogradsky S (1887) Ueber Schwefelbakterien. Botan. Ztg. 45: 489–507, 513–523

    Google Scholar 

  • Wodara C, Kostka S, Egert M, Kelly DP & Friedrich CG (1994) Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. J. Bacteriol. 176: 6188–6191

    Google Scholar 

  • Wood AP & Kelly DP (1987) Chemolithotrophic metabolism of the newly-isolated moderately thermophilic, obligately autotrophic Thiobacillus tepidarius. Arch. Microbiol. 144: 71–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, D.P., Shergill, J.K., Lu, WP. et al. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71, 95–107 (1997). https://doi.org/10.1023/A:1000135707181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000135707181

Navigation