Skip to main content
Log in

The Africanized honey bee dispersal: A mathematical zoom

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2005

Abstract

A general mathematical model for population dispersal featuring long range taxis is presented and exemplified by the dispersal episode of the Africanized honey bees (Apis mellifera adansonii) throughout the American Continent. The mathematical model is a discrete-time and nonlocal model represented by an integrodifference recursion. A newtaxis concept is defined and introduced into the mathematical model by an appropriate modification of the redistribution kernel. The model is capable of predicting the natural barrier for the expansion of the Africanized honey bees in the southern part of the Continent due to low winter temperatures. It also describes a sensitive expansion velocity with respect to the quality of resources, which can explain the AHB’s astounding spread rate, by using two different kinds of population dynamics strategies, one for a resourceful environment and the other for poor regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, E.J., Allen, L.J.S., Xiaoning, G., 1996. Dispersal and competition models for plants. J. Math. Biol. 34, 455–481.

    MATH  MathSciNet  Google Scholar 

  • Andersen, M., 1991. Properties of some density-dependent integrodifference equation population models. Math. Biosci. 104, 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Andow, D.A., Kareiva, P.M., Levin, S.A., Okubo, A., 1993. Spread of invading organisms: patterns of spread. Landscape Ecol. 4, 177–188.

    Article  Google Scholar 

  • Bowman, J., Cappuccino, N., Fahrig, L., 2002. Patch size and population density: the effect of immigration behavior. Conservation Ecol. 6. Online: http://www.consecol.org/vol6/issl/art9.

  • Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E., 2001. Self-Organization in Biological Systems. Princeton University Press.

  • Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House.

  • Fletcher, D.J.C., 1978. The African bee, Apis mellifera adansonii, in Africa. Annu. Rev. Entomol. 23, 151–171.

    Article  Google Scholar 

  • Gonçalves, L.S., 1974. The introduction of the African bees (Apis mellifera adansonii) into Brazil and some comments on their spread in South America. Am. Bee J. 114, 414–416.

    Google Scholar 

  • Hart, D.R., Gardner, R.H., 1997. A spatial model for the spread of invading organisms subject to competition. J. Math. Biol. 35, 935–948.

    Article  MATH  MathSciNet  Google Scholar 

  • Heinrich, B., Esch, H., 1994. Thermoregulation in bees. Am. Sci. 82, 164–170.

    Google Scholar 

  • Hinderer, T.E., Collins, A.M., 1991. Foraging behavior and honey production. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 235–257.

  • Hinderer, T.E., Hellmich, R.L., 1991. The process of africanization. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 95–117.

  • Keller, E.F., Segel, L.A., 1970. Initial of slime mold aggregation viewed as a instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Keller, E.F., Segel, L.A., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Kerr, W.E., del Rio, S.L., Barrionuevo, M.D., 1982. Distribuição da Abelha Africanizada e seus Limites ao Sul. Ciênc. Cultura 34, 1439–1442.

    Google Scholar 

  • Kerr W.E., Gonçalves L.S., Blotta L.F., Maciel H.B., 1972. Biologia Comparada entre as Abelhas Italianas (Apis mellifera ligustica), Africana (Apis mellifera adansonii) e suas Híbridas. 1o Congresso Brasileiro de Apicultura, Florianópolis, Brazil.

    Google Scholar 

  • Kot, M., 1992. Discrete-time travelling waves: ecological examples. J. Math. Biol. 30, 413–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042.

    Article  Google Scholar 

  • Kot, M., Schaffer, W.M., 1986. Discrete-time growth-dispersal models. Math. Biosci. 80, 109–136.

    Article  MATH  MathSciNet  Google Scholar 

  • Lindauer, M., 1961. Communication Among Social Bees. Harvard University Press, Cambridge.

    Google Scholar 

  • Mistro, D.C. 1998. Dispersão de Abelhas Africanizadas: Um Zoom Matemático, Tese de Doutorado, Universidade Estadual de Campinas, Brasil.

    Google Scholar 

  • Moritz, R.F.A., Southwick, E.E., 1992. Bees as Superorganisms: An Evolution Reality. Springer-Verlag, New York.

    Google Scholar 

  • Myerscough, M.R., 2003. Dancing for a decision: a matrix model for nest-site choice by honeybees. Proc. R. Soc. Lond. B, Online 3 February 2003.

  • Murray, J.D., 1989. Mathematical Biology. Springer-Verlag, Berlin.

    Google Scholar 

  • Neubert, M., Kot, M., Lewis, M.A., 2000. Invasion speeds in fluctuating environments. Proc. R. Soc. Lond. B 267, 1603–1610.

    Article  Google Scholar 

  • Okubo, A., Levin, S.A., 2001. Diffusion and Ecological Problems. Modern Perspectives. Springer.

  • Otis, G.W., 1991. Population biology of the Africanized honey bee. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 213–233.

  • Otis, G.W., 1982. Population biology of the Africanized honey bee. In: Jaisson, P. (Ed.), Social Insects in The Tropics. University of Paris, pp. 209–219.

  • Ratnieks, F.L., 1991. Africanized bees: natural selection for colonizing ability. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 119–135.

  • Ricker, W.E., 1954. Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623.

    Google Scholar 

  • Rodrigues, L.A.D. 1998. O Acaso e a Decisão: Modelos Matemáticos para Dispersào Populacional, Tese de Doutorado, Universidade Estadual de Campinas, Brasil.

    Google Scholar 

  • Roubik, D.W., 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press.

  • Roubik, D.W., 1991. Aspects of Africanized honey bee ecology in tropical America. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 259–281.

  • Seeley, T.D., 1985. The information-center strategy of honeybee foraging. Fortsch. Zool. 31, 75–90.

    Google Scholar 

  • Seeley, T.D., 1989. The honey bee colony as a superorganism. Am. Sci. 77, 546–553.

    Google Scholar 

  • Seeley, T.D., 1995. TheWisdom of the Hive—The Social Physiology of Honey Bee Colonies. Harvard University Press.

  • Seeley, T.D., Visscher, P.K., 1985. Survival of honeybees in cold climates: the critical timing of colony growth and reproduction. Ecol. Entomol. 10, 81–88.

    Google Scholar 

  • Segel, L.A., 1984. Mathematical models for cellular behavior. In: Levin, S.A. (Ed.), Studies in Mathematical Biology. Mathematical Association of America, pp. 156–190.

  • Sheppard, W.S., Hinderer, T.E., Mazzoli, J.A., Stelzer, J.A., Shimanuki, H., 1991. Gene flow between African and European-derived honey bee populations in Argentina. Nature 349, 782–784.

    Article  Google Scholar 

  • Shigesada, N., 1984. Spatial distribution of rapidly dispersing animals in hetorogeneous environments. In: Levin, S.A., Hallam, T.T. (Eds.), Mathematical Ecology Lectures Notes in Biomathematics, vol. 54. Springer-Verlag, pp. 478–491.

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press.

  • Shigesada, N., Kawasaki, K., Teramoto, E., 1986. Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. CRC Press.

  • Spivak, M., Fletcher, D.J.C., Breed, M.D., 1991. The ‘African’ Honeybee. Westview Press, Boulder.

    Google Scholar 

  • Stevens, S.S., 1970. Neural events and the psychophysical law. Science 170, 1043–1050.

    Google Scholar 

  • Taylor, O.R., 1977. The past and possible future spread of Africanized honey bees in the Americas. Bee World 58, 19–30.

    Google Scholar 

  • Turchin, P., 1998. Quantitative Analysis of Movement, Measuring and Modelling Population Redistribution in Animals and Plants. Sinauer Associates, Inc. Publishers.

  • Veit, R.R., Lewis, M.A., 1996. Dispersal, population growth, and the Allee efect: dynamics of the house finch invasion of Eastern North America. Am. Naturalist 148, 255–274.

    Article  Google Scholar 

  • Visscher, P.K., Camazine, S., 1999. Collective decisions and cognition in bees. Nature 397, 400.

    Article  Google Scholar 

  • Wang, M.H., Kot, M., Neubert, M.G., 2002. Integrodifference equations, Allee effects, and invasions. J. Math. Biol. 44, 150–168.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger, H., 1982. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Weinberger, H., 2002. On spreading speed and travelling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson, E.O., 1971. The Insect Societies, Cambridge. The Belknap of Harvard University Press.

    Google Scholar 

  • Wilson, E.O., 1975. Sociobiology. Harvard University Press, Cambridge.

    Google Scholar 

  • Winston, M.L., 1987. The Biology of the Honey Bee. Harvard University Press.

  • Winston, M.L., 1991. The inside story: internal colony dynamics of Africanized bees. In: Spivak, M., Fletcher, D.J.C., Breed, M. (Eds.), The ‘African’ Honey Bee. Westview Press, pp. 201–212.

  • Winston, M.L., 1992. The biology and management of Africanized honey bee. Annu. Rev. Entomol. 37, 173–193.

    Article  Google Scholar 

  • Wolfe, J.M., Alvarez, G.A., Horowitz, T.S., 2000. Attention is fast and volition is slow: a random scan is a quicker way to find items than a systematic search. Nature 406, 691–692.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diomar Cristina Mistro.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1016/j.bulm.2005.05.001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mistro, D.C., Rodrigues, L.A.D. & Ferreira, W.C. The Africanized honey bee dispersal: A mathematical zoom. Bull. Math. Biol. 67, 281–312 (2005). https://doi.org/10.1016/j.bulm.2004.07.006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.07.006

Keywords

Navigation