Skip to main content

Advertisement

Log in

The Vasculature in Pulmonary Fibrosis

  • Lung Injury & Fibrosis (CL Wilson, Section Editor)
  • Published:
Current Tissue Microenvironment Reports Aims and scope Submit manuscript

A Correction to this article was published on 28 September 2022

This article has been updated

Abstract

Purpose of review

The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF.

Recent findings

Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis.

Summary

Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018;379:797–8.

    PubMed  Google Scholar 

  2. McCullagh A, Rosenthal M, Wanner A, Hurtado A, Padley S, Bush A. The bronchial circulation--worth a closer look: a review of the relationship between the bronchial vasculature and airway inflammation. Pediatr Pulmonol. 2010;45:1–13.

    Article  PubMed  Google Scholar 

  3. Marini TJ, He K, Hobbs SK, Kaproth-Joslin K. Pictorial review of the pulmonary vasculature: from arteries to veins. Insights Imaging. 2018;9:971–87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walker CM, Rosado-de-Christenson ML, Martinez-Jimenez S, Kunin JR, Wible BC. Bronchial arteries: anatomy, function, hypertrophy, and anomalies. Radiographics. 2015;35:32–49.

    Article  PubMed  Google Scholar 

  5. Anile M, Diso D, Rendina EA, Venuta F. Airway anastomosis for lung transplantation. J Thorac Dis. 2016;8:S197–203.

    PubMed  PubMed Central  Google Scholar 

  6. Marchand P, Gilroy JC, Wilson VH. An anatomical study of the bronchial vascular system and its variations in disease. Thorax. 1950;5:207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aviado DM, Daly MD, Lee CY, Schmidt CF. The contribution of the bronchial circulation to the venous admixture in pulmonary venous blood. J Physiol. 1961;155:602–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pump KK. Distribution of bronchial arteries in the human lung. Chest. 1972;62:447–51.

    Article  CAS  PubMed  Google Scholar 

  9. Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax. 1963;18:225–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ. Capillary cell-type specialization in the alveolus. Nature. 2020;586:785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schupp JC, Adams TS, Cosme C Jr, Raredon MSB, Yuan Y, Omote N, Poli S, Chioccioli M, Rose KA, Manning EP, Sauler M, DeIuliis G, Ahangari F, Neumark N, Habermann AC, Gutierrez AJ, Bui LT, Lafyatis R, Pierce RW, et al. Integrated single-cell atlas of endothelial cells of the human lung. Circulation. 2021;144:286–302.

  12. Adams TS, et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci Adv. 2020;6:eaba1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A, Sit RV, Chang S, Conley SD, Mori Y, Seita J, Berry GJ, Shrager JB, Metzger RJ, Kuo CS, Neff N, Weissman IL, Quake SR, Krasnow MA. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Habermann AC, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6:eaba1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vila Ellis L, Chen J. A cell-centric view of lung alveologenesis. Dev Dyn. 2021;250:482–96.

    Article  CAS  PubMed  Google Scholar 

  16. Vila Ellis L, et al. Epithelial vegfa specifies a distinct endothelial population in the mouse lung. Dev Cell. 2020;52:617–630 e616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harter TS, et al. A solution to Nature's haemoglobin knockout: a plasma-accessible carbonic anhydrase catalyses CO2 excretion in Antarctic icefish gills. J Exp Biol. 2018;221.

  18. Lazarus A, del-Moral PM, Ilovich O, Mishani E, Warburton D, Keshet E. A perfusion-independent role of blood vessels in determining branching stereotypy of lung airways. Development. 2011;138:2359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helker CS, et al. Apelin signaling drives vascular endothelial cells toward a pro-angiogenic state. Elife. 2020;9.

  20. Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol. 2006;296:177–89.

    Article  CAS  PubMed  Google Scholar 

  21. Kalin RE, et al. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol. 2007;305:599–614.

    Article  PubMed  Google Scholar 

  22. Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 2008;27:522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Papangeli I, Kim J, Maier I, Park S, Lee A, Kang Y, Tanaka K, Khan OF, Ju H, Kojima Y, Red-Horse K, Anderson DG, Siekmann AF, Chun HJ. MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nat Commun. 2016;7:11268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 2003;16:287–96.

    Article  CAS  PubMed  Google Scholar 

  26. Ren X, Ustiyan V, Guo M, Wang G, Bolte C, Zhang Y, Xu Y, Whitsett JA, Kalin TV, Kalinichenko VV. Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT(+) Endothelial Progenitor Cells. Am J Respir Crit Care Med. 2019;200:1164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016;143:3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Negretti NM, et al. A single-cell atlas of mouse lung development. Development. 2021;148.

  29. Verloop MC. On the arteriae bronchiales and their anastomosing with the arteria pulmonalis in some rodents; a micro-anatomical study. Acta Anat (Basel). 1949;7:1–32.

    Article  CAS  Google Scholar 

  30. Kotoulas C, Panagiotou I, Tsipas P, Melachrinou M, Alexopoulos D, Dougenis D. Experimental studies in the bronchial circulation. Which is the ideal animal model? J Thorac Dis. 2014;6:1506–12.

    PubMed  PubMed Central  Google Scholar 

  31. Phalen RF, Oldham MJ, Wolff RK. The relevance of animal models for aerosol studies. J Aerosol Med Pulm Drug Deliv. 2008;21:113–24.

    Article  PubMed  Google Scholar 

  32. Ackermann M, et al. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. 2020;55.

  33. Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am J Respir Cell Mol Biol. 2011;45:1–15.

    Article  CAS  PubMed  Google Scholar 

  34. Ebina M, Shimizukawa M, Shibata N, Kimura Y, Suzuki T, Endo M, Sasano H, Kondo T, Nukiwa T. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169:1203–8.

    Article  PubMed  Google Scholar 

  35. Tachihara A, Jin E, Matsuoka T, Ghazizadeh M, Yoshino S, Takemura T, D. Travis W, Kawanami O. Critical roles of capillary endothelial cells for alveolar remodeling in nonspecific and usual interstitial pneumonias. J Nippon Med Sch. 2006;73:203–13.

    Article  CAS  PubMed  Google Scholar 

  36. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, Schwarz MI, Cool CD, Worthen GS. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med. 2004;170:242–51.

    Article  PubMed  Google Scholar 

  37. Murray LA, et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight. 2017;2.

  38. Peao MN, Aguas AP, de Sa CM, Grande NR. Neoformation of blood vessels in association with rat lung fibrosis induced by bleomycin. Anat Rec. 1994;238:57–67.

    Article  CAS  PubMed  Google Scholar 

  39. Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis. 2008;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Iwasawa T, Takemura T, Okudera K, Gotoh T, Iwao Y, Kitamura H, Baba T, Ogura T, Oba MS. The importance of subpleural fibrosis in the prognosis of patients with idiopathic interstitial pneumonias. Eur J Radiol. 2017;90:106–13.

    Article  PubMed  Google Scholar 

  41. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, Rojas M, Lafyatis R. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis. 2019;78:1379–87.

    Article  CAS  PubMed  Google Scholar 

  42. Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 2020;11:1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Augustin HG, Koh GY. Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science. 2017;357.

  44. Kim AD, Lake BB, Chen S, Wu Y, Guo J, Parvez RK, Tran T, Thornton ME, Grubbs B, McMahon J, Zhang K, McMahon A. Cellular recruitment by podocyte-derived pro-migratory factors in assembly of the human renal filter. iScience. 2019;20:402–14.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tran T, et al. In vivo developmental trajectories of human podocyte inform in vitro differentiation of pluripotent stem cell-derived podocytes. Dev Cell. 2019;50:102–116 e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 2019;129:3807–20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Perelli RM, O'Sullivan ML, Zarnick S, Kay JN. Environmental oxygen regulates astrocyte proliferation to guide angiogenesis during retinal development. Development. 2021;148.

  48. Dumas SJ, Meta E, Borri M, Luo Y, Li X, Rabelink TJ, Carmeliet P. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat Rev Nephrol. 2021;17:441–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma R, Martinez-Ramirez AS, Borders TL, Gao F, Sosa-Pineda B. Metabolic and non-metabolic liver zonation is established non-synchronously and requires sinusoidal Wnts. Elife. 2020;9.

  50. Engelbrecht E, MacRae CA, Hla T. Lysolipids in vascular development, biology, and disease. Arterioscler Thromb Vasc Biol. 2021;41:564–84.

    Article  CAS  PubMed  Google Scholar 

  51. Gomez-Salinero JM, Itkin T, Rafii S. Developmental angiocrine diversification of endothelial cells for organotypic regeneration. Dev Cell. 2021;56:3042–51.

    Article  CAS  PubMed  Google Scholar 

  52. Froidure A, et al. Chaotic activation of developmental signalling pathways drives idiopathic pulmonary fibrosis. Eur Respir Rev. 2020;29.

  53. Chanda D, Otoupalova E, Smith SR, Volckaert T, de Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis of lung fibrosis. Mol Aspects Med. 2019;65:56–69.

    Article  CAS  PubMed  Google Scholar 

  54. Gokey JJ, Patel SD, Kropski JA. The Role of Hippo/YAP Signaling in Alveolar Repair and Pulmonary Fibrosis. Front Med (Lausanne). 2021;8:752316.

    Article  Google Scholar 

  55. Edeling M, Ragi G, Huang S, Pavenstadt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch. Wnt and Hedgehog. Nat Rev Nephrol. 2016;12:426–39.

  56. Zhu C, Tabas I, Schwabe RF, Pajvani UB. Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol. 2021;18:131–42.

    Article  PubMed  Google Scholar 

  57. Soydemir S, Comella O, Abdelmottaleb D, Pritchett J. Does Mechanocrine signaling by liver sinusoidal endothelial cells offer new opportunities for the development of anti-fibrotics? Front Med (Lausanne). 2019;6:312.

    Article  Google Scholar 

  58. Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma JX. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol. 2016;311:H738–49.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–8.

  60. Terkelsen MK, Bendixen SM, Hansen D, Scott EAH, Moeller AF, Nielsen R, Mandrup S, Schlosser A, Andersen TL, Sorensen GL, Krag A, Natarajan KN, Detlefsen S, Dimke H, Ravnskjaer K. Transcriptional dynamics of hepatic sinusoid-associated cells after liver injury. Hepatology. 2020;72:2119–33.

    Article  CAS  PubMed  Google Scholar 

  61. Eldridge L, Wagner EM. Angiogenesis in the lung. J Physiol. 2019;597:1023–32.

    Article  CAS  PubMed  Google Scholar 

  62. Apostolidis SA, Stifano G, Tabib T, Rice LM, Morse CM, Kahaleh B, Lafyatis R. Single cell RNA sequencing identifies HSPG2 and APLNR as markers of endothelial cell injury in systemic sclerosis skin. Front Immunol. 2018;9:2191.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tombor LS, John D, Glaser SF, Luxán G, Forte E, Furtado M, Rosenthal N, Baumgarten N, Schulz MH, Wittig J, Rogg EM, Manavski Y, Fischer A, Muhly-Reinholz M, Klee K, Looso M, Selignow C, Acker T, Bibli SI, et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat Commun. 2021;12:681.

  64. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124:2299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation. 2016;23:95–121.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hong H, Tian XY. The role of macrophages in vascular repair and regeneration after ischemic injury. Int J Mol Sci. 2020;21.

  67. Frangogiannis NG. Fact and fiction about fibroblast to endothelium conversion: semantics and substance of cellular identity. Circulation. 2020;142:1663–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021;10.

  69. Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Möckel D, Baeck C, Hittatiya K, Eulberg D, Luedde T, Kiessling F, Trautwein C, Lammers T, Tacke F. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut. 2014;63:1960–71.

    Article  CAS  PubMed  Google Scholar 

  70. Kropski, J.A., Richmond, B.W., Gaskill, C.F., Foronjy, R.F. & Majka, S.M. Deregulated angiogenesis in chronic lung diseases: a possible role for lung mesenchymal progenitor cells (2017 Grover Conference Series). Pulm Circ 8, 2045893217739807, 18 (2018).

  71. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen-Kim TD, Frauenfelder T, Strobel K, Veit-Haibach P, Huellner MW. Assessment of bronchial and pulmonary blood supply in non-small cell lung cancer subtypes using computed tomography perfusion. Invest Radiol. 2015;50:179–86.

    Article  PubMed  Google Scholar 

  73. Yuan X, Zhang J, Ao G, Quan C, Tian Y, Li H. Lung cancer perfusion: can we measure pulmonary and bronchial circulation simultaneously? Eur Radiol. 2012;22:1665–71.

    Article  PubMed  Google Scholar 

  74. Eldridge L, Moldobaeva A, Zhong Q, Jenkins J, Snyder M, Brown RH, Mitzner W, Wagner EM. Bronchial Artery Angiogenesis Drives Lung Tumor Growth. Cancer Res. 2016;76:5962–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liebow AA, Hales MR, et al. Studies on the lung after ligation of the pulmonary artery; anatomical changes. Am J Pathol. 1950;26:177–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ellis FH Jr, Grindlay JH, Edwards JE. The bronchial arteries. III. Structural changes after division of the rat's left pulmonary artery. Am J Pathol. 1952;28:89–103.

  77. Charan NB, Carvalho P. Angiogenesis in bronchial circulatory system after unilateral pulmonary artery obstruction. J Appl Physiol. 1997;1985(82):284–91.

    Article  Google Scholar 

  78. Williams MH Jr, Towbin EJ. Magnitude and time of development of the collateral circulation to the lung after occlusion of the left pulmonary artery. Circ Res. 1955;3:422–4.

    Article  PubMed  Google Scholar 

  79. Weibel ER. Early stages in the development of collateral circulation to the lung in the rat. Circ Res. 1960;8:353–76.

    Article  CAS  PubMed  Google Scholar 

  80. Alley RD, Van Mierop LH, Peck AS, Kausel HW, Stranahan A. Bronchial arterial collateral circulation. Effect of experimental ligation of the pulmonary artery and subsequent reanastomosis. Am Rev Respir Dis. 1961;83:31–7.

  81. Fishman AP. The clinical significance of the pulmonary collateral circulation. Circulation. 1961;24:677–90.

    Article  CAS  PubMed  Google Scholar 

  82. Charan NB, Baile EM, Pare PD. Bronchial vascular congestion and angiogenesis. Eur Respir J. 1997;10:1173–80.

    Article  CAS  PubMed  Google Scholar 

  83. Malik AB, Tracy SE. Bronchovascular adjustments after pulmonary embolism. J Appl Physiol Respir Environ Exerc Physiol. 1980;49:476–81.

    CAS  PubMed  Google Scholar 

  84. Galambos C, Sims-Lucas S, Abman SH, Cool CD. Intrapulmonary bronchopulmonary anastomoses and plexiform lesions in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2016;193:574–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holsclaw DS, Grand RJ, Shwachman H. Massive hemoptysis in cystic fibrosis. J Pediatr. 1970;76:829–38.

    Article  CAS  PubMed  Google Scholar 

  86. Hurt K, Simmonds NJ. Cystic fibrosis: management of haemoptysis. Paediatr Respir Rev. 2012;13:200–5.

    Article  CAS  PubMed  Google Scholar 

  87. Katzen J, Beers MF. Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest. 2020;130:5088–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kobayashi Y, Tata A, Konkimalla A, Katsura H, Lee RF, Ou J, Banovich NE, Kropski JA, Tata PR. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 2020;22:934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Konigshoff M. Lung cancer in pulmonary fibrosis: tales of epithelial cell plasticity. Respiration. 2011;81:353–8.

    Article  PubMed  Google Scholar 

  90. Plantier L, Crestani B, Wert SE, Dehoux M, Zweytick B, Guenther A, Whitsett JA. Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis. Thorax. 2011;66:651–7.

    Article  PubMed  Google Scholar 

  91. Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, Schwarz MI, Schwartz DA, Reynolds SD. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary pseudostratified epithelium. PLoS One. 2013;8:e58658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Valenzi E, Tabib T, Papazoglou A, Sembrat J, Trejo Bittar HE, Rojas M, Lafyatis R. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front Immunol. 2021;12:595811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Khanna D, Tashkin DP, Denton CP, Renzoni EA, Desai SR, Varga J. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am J Respir Crit Care Med. 2020;201:650–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kreuter M, et al. Acute exacerbation of idiopathic pulmonary fibrosis: international survey and call for harmonisation. Eur Respir J. 2020;55.

  95. Montesi SB, et al. Gadofosveset-enhanced lung magnetic resonance imaging to detect ongoing vascular leak in pulmonary fibrosis. Eur Respir J. 2018;51.

  96. Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J. 2020;56.

  97. Montesi SB, et al. Dynamic contrast-enhanced magnetic resonance imaging of the lung reveals important pathobiology in idiopathic pulmonary fibrosis. ERJ Open Res. 2021;7.

  98. Gonzales JN, Lucas R, Verin AD. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches. Austin J Vasc Med. 2015;2.

  99. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, Lasky JA, Loyd JE, Noth I, Olman MA, Raghu G, Roman J, Ryu JH, Zisman DA, Hunninghake GW, Colby TV, Egan JJ, Hansell DM, Johkoh T, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43.

  100. Kim DS, et al. Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J. 2006;27:143–50.

    Article  CAS  PubMed  Google Scholar 

  101. Crooks MG, Hart SP. Coagulation and anticoagulation in idiopathic pulmonary fibrosis. Eur Respir Rev. 2015;24:392–9.

    Article  PubMed  Google Scholar 

  102. Marchioni A, Tonelli R, Ball L, Fantini R, Castaniere I, Cerri S, Luppi F, Malerba M, Pelosi P, Clini E. Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome? Crit Care. 2018;22:80.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xue J, Kass DJ, Bon J, Vuga L, Tan J, Csizmadia E, Otterbein L, Soejima M, Levesque MC, Gibson KF, Kaminski N, Pilewski JM, Donahoe M, Sciurba FC, Duncan SR. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J Immunol. 2013;191:2089–95.

    Article  CAS  PubMed  Google Scholar 

  104. Heukels P, van Hulst JAC, van Nimwegen M, Boorsma CE, Melgert BN, von der Thusen JH, van den Blink B, Hoek RAS, Miedema JR, Neys SFH, Corneth OBJ, Hendriks RW, Wijsenbeek MS, Kool M. Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis. Respir Res. 2019;20:232.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sin S, Lee KH, Hur JH, Lee SH, Lee YJ, Cho YJ, Yoon HI, Lee JH, Lee CT, Park JS. Impact of mediastinal lymph node enlargement on the prognosis of idiopathic pulmonary fibrosis. PLoS One. 2018;13:e0201154.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sgalla G, Larici AR, Golfi N, Calvello M, Farchione A, del Ciello A, Varone F, Iovene B, Manfredi R, Richeldi L. Mediastinal lymph node enlargement in idiopathic pulmonary fibrosis: relationships with disease progression and pulmonary function trends. BMC Pulm Med. 2020;20:249.

  107. Ali MF, Egan AM, Shaughnessy GF, Anderson DK, Kottom TJ, Dasari H, van Keulen VP, Aubry MC, Yi ES, Limper AH, Peikert T, Carmona EM. Antifibrotics modify B-cell-induced fibroblast migration and activation in patients with idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;64:722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Solomon JJ, Matson S, Kelmenson LB, Chung JH, Hobbs SB, Rosas IO, Dellaripa PF, Doyle TJ, Poli S, Esposito AJ, Visser A, Marin AI, Amigues I, Fernández Pérez ER, Brown KK, Mahler M, Heinz D, Cool C, Deane KD, et al. IgA antibodies directed against citrullinated protein antigens are elevated in patients with idiopathic pulmonary fibrosis. Chest. 2020;157:1513–21.

  109. Mayr CH, Simon LM, Leuschner G, Ansari M, Schniering J, Geyer PE, Angelidis I, Strunz M, Singh P, Kneidinger N, Reichenberger F, Silbernagel E, Böhm S, Adler H, Lindner M, Maurer B, Hilgendorff A, Prasse A, Behr J, et al. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol Med. 2021;13:e12871.

  110. Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest. 2006;116:3183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reynisdottir G, Olsen H, Joshua V, Engström M, Forsslund H, Karimi R, Sköld CM, Nyren S, Eklund A, Grunewald J, Catrina AI. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann Rheum Dis. 2016;75:1722–7.

    Article  CAS  PubMed  Google Scholar 

  112. Atkins SR, Turesson C, Myers JL, Tazelaar HD, Ryu JH, Matteson EL, Bongartz T. Morphologic and quantitative assessment of CD20+ B cell infiltrates in rheumatoid arthritis-associated nonspecific interstitial pneumonia and usual interstitial pneumonia. Arthritis Rheum. 2006;54:635–41.

    Article  PubMed  Google Scholar 

  113. Caporarello N, Meridew JA, Aravamudhan A, Jones DL, Austin SA, Pham TX, Haak AJ, Moo Choi K, Tan Q, Haresi A, Huang SK, Katusic ZS, Tschumperlin DJ, Ligresti G. Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell. 2020;19:e13196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kano K, Aoki J, Hla T. Lysophospholipid Mediators in health and disease. Annu Rev Pathol. 2021;17:459–83.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yanagida K, Hla T. Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annu Rev Physiol. 2017;79:67–91.

    Article  CAS  PubMed  Google Scholar 

  116. Sabbagh MF, et al. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. Elife. 2018;7.

  117. Ding BS, et al. Aging suppresses sphingosine-1-phosphate chaperone ApoM in circulation resulting in maladaptive organ repair. Dev Cell. 2020;53:677–690 e674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Knipe RS, Spinney JJ, Abe EA, Probst CK, Franklin A, Logue A, Giacona F, Drummond M, Griffith J, Brazee PL, Hariri LP, Montesi SB, Black KE, Hla T, Kuo A, Cartier A, Engelbrecht E, Christoffersen C, Shea BS, et al. Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular permeability and exacerbates bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2021;66:38–52.

  119. Burg N, Swendeman S, Worgall S, Hla T, Salmon JE. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol. 2018;70:1879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ, Brazee PL, Grasberger P, Zhang L, Black KE, Sakai N, Shea BS, Liao JK, Medoff BD, Tager AM. The rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am J Respir Cell Mol Biol. 2018;58:471–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Slot E, et al. Alveolar capillary dysplasia with misalignment of the pulmonary veins: clinical, histological, and genetic aspects. Pulm Circ. 2018;8:2045894018795143.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cai Y, et al. FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal. 2016;9:ra40.

    Article  PubMed  Google Scholar 

  123. Kalinichenko VV, Lim L, Stolz DB, Shin B, Rausa FM, Clark J, Whitsett JA, Watkins SC, Costa RH. Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol. 2001;235:489–506.

    Article  CAS  PubMed  Google Scholar 

  124. Gough A, Linden M, Spence D, Patterson CC, Halliday HL, McGarvey LPA. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia. Eur Respir J. 2014;43:808–16.

    Article  PubMed  Google Scholar 

  125. Chen H, Levine YC, Golan DE, Michel T, Lin AJ. Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem. 2008;283:4439–47.

    Article  CAS  PubMed  Google Scholar 

  126. Chen W, Oberwinkler H, Werner F, Gaßner B, Nakagawa H, Feil R, Hofmann F, Schlossmann J, Dietrich A, Gudermann T, Nishida M, del Galdo S, Wieland T, Kuhn M. Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels. Arterioscler Thromb Vasc Biol. 2013;33:2121–9.

    Article  CAS  PubMed  Google Scholar 

  127. Bolz SS, Pohl U. Indomethacin enhances endothelial NO release--evidence for a role of PGI2 in the autocrine control of calcium-dependent autacoid production. Cardiovasc Res. 1997;36:437–44.

    Article  CAS  PubMed  Google Scholar 

  128. Draijer R, Atsma DE, van der Laarse A, van Hinsbergh VW. cGMP and nitric oxide modulate thrombin-induced endothelial permeability. Regulation via different pathways in human aortic and umbilical vein endothelial cells. Circ Res. 1995;76:199–208.

    Article  CAS  PubMed  Google Scholar 

  129. Cokic VP, Beleslin-Cokic BB, Tomic M, Stojilkovic SS, Noguchi CT, Schechter AN. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood. 2006;108:184–91.

    Article  CAS  PubMed  Google Scholar 

  130. Surapisitchat J, Jeon KI, Yan C, Beavo JA. Differential regulation of endothelial cell permeability by cGMP via phosphodiesterases 2 and 3. Circ Res. 2007;101:811–8.

    Article  CAS  PubMed  Google Scholar 

  131. Kuebler WM. The Janus-faced regulation of endothelial permeability by cyclic GMP. Am J Physiol Lung Cell Mol Physiol. 2011;301:L157–60.

    Article  CAS  PubMed  Google Scholar 

  132. Barnes H, Brown Z, Burns A, Williams T. Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane Database Syst Rev. 2019;1:CD012621.

    PubMed  Google Scholar 

  133. Yoshimura S, et al. Overexpression of nitric oxide synthase by the endothelium attenuates bleomycin-induced lung fibrosis and impairs MMP-9/TIMP-1 balance. Respirology. 2006;11:546–56.

    Article  PubMed  Google Scholar 

  134. Okamoto A, Nojiri T, Konishi K, Tokudome T, Miura K, Hosoda H, Hino J, Miyazato M, Kyomoto Y, Asai K, Hirata K, Kangawa K. Atrial natriuretic peptide protects against bleomycin-induced pulmonary fibrosis via vascular endothelial cells in mice : ANP for pulmonary fibrosis. Respir Res. 2017;18:1.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hemnes AR, Zaiman A, Champion HC. PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation. Am J Physiol Lung Cell Mol Physiol. 2008;294:L24–33.

    Article  CAS  PubMed  Google Scholar 

  136. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  137. Ulvmar MH, Makinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res. 2016;111:310–21.

  138. Ulvmar MH, Makinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res. 2016;111:310–21.

  139. Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol. 2021;18:368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Brulois K, Rajaraman A, Szade A, Nordling S, Bogoslowski A, Dermadi D, Rahman M, Kiefel H, O’Hara E, Koning JJ, Kawashima H, Zhou B, Vestweber D, Red-Horse K, Mebius RE, Adams RH, Kubes P, Pan J, Butcher EC. A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun. 2020;11:3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, Brulois K, Dermadi D, Nordling S, Vanlandewijck M, Jalkanen S, Ulvmar MH, Butcher EC. A single-cell transcriptional roadmap of the mouse and human lymph node lymphatic vasculature. Front Cardiovasc Med. 2020;7:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reed HO, Wang L, Sonett J, Chen M, Yang J, Li L, Aradi P, Jakus Z, D’Armiento J, Hancock WW, Kahn ML. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J Clin Invest. 2019;129:2514–26.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Weber E, Sozio F, Borghini A, Sestini P, Renzoni E. Pulmonary lymphatic vessel morphology: a review. Ann Anat. 2018;218:110–7.

    Article  CAS  PubMed  Google Scholar 

  144. Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholová I, Kauppinen RA, Achen MG, Stacker SA, Alitalo K, Ylä-Herttuala S. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res. 2003;92:1098–106.

    Article  CAS  PubMed  Google Scholar 

  145. Kholova I, et al. Adenovirus-mediated gene transfer of human vascular endothelial growth factor-d induces transient angiogenic effects in mouse hind limb muscle. Hum Gene Ther. 2007;18:232–44.

    Article  CAS  PubMed  Google Scholar 

  146. Lara AR, Cosgrove GP, Janssen WJ, Huie TJ, Burnham EL, Heinz DE, Curran-Everett D, Sahin H, Schwarz MI, Cool CD, Groshong SD, Geraci MW, Tuder RM, Hyde DM, Henson PM. Increased lymphatic vessel length is associated with the fibroblast reticulum and disease severity in usual interstitial pneumonia and nonspecific interstitial pneumonia. Chest. 2012;142:1569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gaje PN, Stoia-Djeska I, Cimpean AM, Ceausu RA, Tudorache V, Raica M. Lymphangiogenesis as a prerequisite in the pathogenesis of lung fibrosis. In Vivo. 2014;28:367–73.

    PubMed  Google Scholar 

  148. El-Chemaly S, et al. Abnormal lymphangiogenesis in idiopathic pulmonary fibrosis with insights into cellular and molecular mechanisms. Proc Natl Acad Sci U S A. 2009;106:3958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebina M, Shibata N, Ohta H, Hisata S, Tamada T, Ono M, Okaya K, Kondo T, Nukiwa T. The disappearance of subpleural and interlobular lymphatics in idiopathic pulmonary fibrosis. Lymphat Res Biol. 2010;8:199–207.

    Article  CAS  PubMed  Google Scholar 

  150. Yamashita M. Lymphangiogenesis and lesion heterogeneity in interstitial lung diseases. Clin Med Insights Circ Respir Pulm Med. 2015;9:111–21.

    PubMed  Google Scholar 

  151. Baluk P, Naikawadi RP, Kim S, Rodriguez F, Choi D, Hong YK, Wolters PJ, McDonald DM. Lymphatic proliferation ameliorates pulmonary fibrosis after lung injury. Am J Pathol. 2020;190:2355–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thomson BR, Liu P, Onay T, du J, Tompson SW, Misener S, Purohit RR, Young TL, Jin J, Quaggin SE. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat Commun. 2021;12:6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chung JJ, Goldstein L, Chen YJJ, Lee J, Webster JD, Roose-Girma M, Paudyal SC, Modrusan Z, Dey A, Shaw AS. Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury. J Am Soc Nephrol. 2020;31:2341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Voigt AP, Mulfaul K, Mullin NK, Flamme-Wiese MJ, Giacalone JC, Stone EM, Tucker BA, Scheetz TE, Mullins RF. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc Natl Acad Sci U S A. 2019;116:24100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Menon R, et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight. 2020;5.

  156. Hunninghake GM. Interstitial lung abnormalities: erecting fences in the path towards advanced pulmonary fibrosis. Thorax. 2019;74:506–11.

    Article  PubMed  Google Scholar 

  157. Brody SL, Gunsten SP, Luehmann HP, Sultan DH, Hoelscher M, Heo GS, Pan J, Koenitzer JR, Lee EC, Huang T, Mpoy C, Guo S, Laforest R, Salter A, Russell TD, Shifren A, Combadiere C, Lavine KJ, Kreisel D, et al. Chemokine receptor 2-targeted molecular imaging in pulmonary fibrosis. A clinical trial. Am J Respir Crit Care Med. 2021;203:78–89.

  158. Kato K, Diéguez-Hurtado R, Park DY, Hong SP, Kato-Azuma S, Adams S, Stehling M, Trappmann B, Wrana JL, Koh GY, Adams RH. Pulmonary pericytes regulate lung morphogenesis. Nat Commun. 2018;9:2448.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn. 2018;247:346–58.

    Article  PubMed  Google Scholar 

  160. Nie X, Shen C, Tan J, Wu Z, Wang W, Chen Y, Dai Y, Yang X, Ye S, Chen J, Bian JS. Periostin: a potential therapeutic target for pulmonary hypertension? Circ Res. 2020;127:1138–52.

    Article  CAS  PubMed  Google Scholar 

  161. Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, Fry CD, White ES, Sisson TH, Tayob N, Carnemolla B, Orecchia P, Flaherty KR, Hershenson MB, Murray S, Martinez FJ, Moore BB, the COMET Investigators. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;303:L1046–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Okamoto M, Hoshino T, Kitasato Y, Sakazaki Y, Kawayama T, Fujimoto K, Ohshima K, Shiraishi H, Uchida M, Ono J, Ohta S, Kato S, Izuhara K, Aizawa H. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J. 2011;37:1119–27.

    Article  CAS  PubMed  Google Scholar 

  163. Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, Okamoto M, Ahlfeld SK, Ohshima K, Kato S, Toda S, Sagara H, Aizawa H, Hoshino T, Conway SJ, Hayashi S, Izuhara K. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Landry NM, Cohen S, Dixon IMC. Periostin in cardiovascular disease and development: a tale of two distinct roles. Basic Res Cardiol. 2018;113:1.

    Article  CAS  PubMed  Google Scholar 

  165. Guerrot D, Dussaule JC, Mael-Ainin M, Xu-Dubois YC, Rondeau E, Chatziantoniou C, Placier S. Identification of periostin as a critical marker of progression/reversal of hypertensive nephropathy. PLoS One. 2012;7:e31974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kuppe C, Ibrahim MM, Kranz J, Zhang X, Ziegler S, Perales-Patón J, Jansen J, Reimer KC, Smith JR, Dobie R, Wilson-Kanamori JR, Halder M, Xu Y, Kabgani N, Kaesler N, Klaus M, Gernhold L, Puelles VG, Huber TB, et al. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589:281–6.

  167. Nakazeki F, Nishiga M, Horie T, Nishi H, Nakashima Y, Baba O, Kuwabara Y, Nishino T, Nakao T, Ide Y, Koyama S, Kimura M, Tsuji S, Sowa N, Yoshida S, Conway SJ, Yanagita M, Kimura T, Ono K. Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo. Sci Rep. 2018;8:8553.

    Article  PubMed  PubMed Central  Google Scholar 

  168. An JN, Yang SH, Kim YC, Hwang JH, Park JY, Kim DK, Kim JH, Kim DW, Hur DG, Oh YK, Lim CS, Kim YS, Lee JP. Periostin induces kidney fibrosis after acute kidney injury via the p38 MAPK pathway. Am J Physiol Renal Physiol. 2019;316:F426–37.

    Article  CAS  PubMed  Google Scholar 

  169. Seki M, Furukawa N, Koitabashi N, Obokata M, Conway SJ, Arakawa H, Kurabayashi M. Periostin-expressing cell-specific transforming growth factor-beta inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS One. 2019;14:e0220795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li P, Oparil S, Feng W, Chen YF. Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol. 2004;97(1985):1550–8; discussion 1549.

    Article  CAS  PubMed  Google Scholar 

  171. Smid JK, Faulkes S, Rudnicki MA. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824–36.

    Article  CAS  PubMed  Google Scholar 

  172. Kim BR, Kwon YW, Park GT, Choi EJ, Seo JK, Jang IH, Kim SC, Ko HC, Lee SC, Kim JH. Identification of a novel angiogenic peptide from periostin. PLoS One. 2017;12:e0187464.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Huizer K, Zhu C, Chirifi I, Krist B, Zorgman D, van der Weiden M, van den Bosch TPP, Dumas J, Cheng C, Kros JM, Mustafa DA. Periostin Is Expressed by Pericytes and Is Crucial for Angiogenesis in Glioma. J Neuropathol Exp Neurol. 2020;79:863–72.

    Article  CAS  PubMed  Google Scholar 

  174. Kubo Y, Ishikawa K, Mori K, Kobayashi Y, Nakama T, Arima M, Nakao S, Hisatomi T, Haruta M, Sonoda KH, Yoshida S. Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy. Sci Rep. 2020;10:9299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jeong JY, Jeong W, Kim HJ. Promotion of Chondrosarcoma Cell Survival, Migration and Lymphangiogenesis by Periostin. Anticancer Res. 2020;40:5463–9.

    Article  CAS  PubMed  Google Scholar 

  176. Bentley JK, Chen Q, Hong JY, Popova AP, Lei J, Moore BB, Hershenson MB. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014;134:1433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, Toda S, Inagaki N, Kurihara Y, Hayashida S, Takeuchi S, Koike K, Ono J, Noshiro H, Furue M, Conway SJ, Narisawa Y, Izuhara K. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest. 2012;122:2590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, Wu L, Sloan AE, McLendon RE, Li X, Rich JN, Bao S. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Keklikoglou I, Kadioglu E, Bissinger S, Langlois B, Bellotti A, Orend G, Ries CH, de Palma M. Periostin limits tumor response to VEGFA inhibition. Cell Rep. 2018;22:2530–40.

    Article  CAS  PubMed  Google Scholar 

  180. Kormann R, Kavvadas P, Placier S, Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE, Prakoura N, Chatziantoniou C. Periostin promotes cell proliferation and macrophage polarization to drive repair after AKI. J Am Soc Nephrol. 2020;31:85–100.

    Article  CAS  PubMed  Google Scholar 

  181. Tsou CL, Gladue RP, Carroll LA, Paradis T, Boyd JG, Nelson RT, Neote K, Charo IF. Identification of C-C chemokine receptor 1 (CCR1) as the monocyte hemofiltrate C-C chemokine (HCC)-1 receptor. J Exp Med. 1998;188:603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Godfraind C, Calicchio ML, Kozakewich H. Pyogenic granuloma, an impaired wound healing process, linked to vascular growth driven by FLT4 and the nitric oxide pathway. Mod Pathol. 2013;26:247–55.

    Article  CAS  PubMed  Google Scholar 

  183. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M. Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J. 2019;40:2507–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Su T, Yang Y, Lai S, Jeong J, Jung Y, McConnell M, Utsumi T, Iwakiri Y. Single-Cell Transcriptomics Reveals Zone-Specific Alterations of Liver Sinusoidal Endothelial Cells in Cirrhosis. Cell Mol Gastroenterol Hepatol. 2021;11:1139–61.

    Article  PubMed  Google Scholar 

  185. Zhao Y, Zhao J. PV1: gatekeeper of endothelial permeability. Am J Respir Cell Mol Biol. 2020;63:413–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Guo L, Zhang H, Hou Y, Wei T, Liu J. Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis. Exp Ther Med. 2016;12:1639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Keuschnigg J, Henttinen T, Auvinen K, Karikoski M, Salmi M, Jalkanen S. The prototype endothelial marker PAL-E is a leukocyte trafficking molecule. Blood. 2009;114:478–84.

    Article  CAS  PubMed  Google Scholar 

  188. Elgueta R, Tse D, Deharvengt SJ, Luciano MR, Carriere C, Noelle RJ, Stan RV. Endothelial plasmalemma vesicle-associated protein regulates the homeostasis of splenic immature B cells and B-1 B cells. J Immunol. 2016;197:3970–81.

    Article  CAS  PubMed  Google Scholar 

  189. Rantakari P, Auvinen K, Jäppinen N, Kapraali M, Valtonen J, Karikoski M, Gerke H, Iftakhar-E-Khuda I, Keuschnigg J, Umemoto E, Tohya K, Miyasaka M, Elima K, Jalkanen S, Salmi M. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Nat Immunol. 2015;16:386–96.

    Article  CAS  PubMed  Google Scholar 

  190. Herrnberger L, Seitz R, Kuespert S, Bösl MR, Fuchshofer R, Tamm ER. Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem Cell Biol. 2012;138:709–24.

    Article  CAS  PubMed  Google Scholar 

  191. Stan RV, Tkachenko E, Niesman IR. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell. 2004;15:3615–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lemoinne S, Cadoret A, Rautou PE, el Mourabit H, Ratziu V, Corpechot C, Rey C, Bosselut N, Barbu V, Wendum D, Feldmann G, Boulanger C, Henegar C, Housset C, Thabut D. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology. 2015;61:1041–55.

    Article  CAS  PubMed  Google Scholar 

  193. Hagg PM, Hagg PO, Peltonen S, Autio-Harmainen H, Pihlajaniemi T. Location of type XV collagen in human tissues and its accumulation in the interstitial matrix of the fibrotic kidney. Am J Pathol. 1997;150:2075–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fässler R, Muona A, Ilves M, Ruskoaho H, Takala TES, Pihlajaniemi T. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A. 2001;98:1194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Uehara M, Enomoto N, Mikamo M, Oyama Y, Kono M, Fujisawa T, Inui N, Nakamura Y, Suda T. Impact of angiopoietin-1 and -2 on clinical course of idiopathic pulmonary fibrosis. Respir Med. 2016;114:18–26.

    Article  PubMed  Google Scholar 

  196. Thurston G, Daly C. The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med. 2012;2:a006550.

    Article  PubMed  Google Scholar 

  197. Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16:635–61.

    Article  CAS  PubMed  Google Scholar 

  198. Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8.

  199. Daly C, Pasnikowski E, Burova E, Wong V, Aldrich TH, Griffiths J, Ioffe E, Daly TJ, Fandl JP, Papadopoulos N, McDonald DM, Thurston G, Yancopoulos GD, Rudge JS. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A. 2006;103:15491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Souma T, Thomson BR, Heinen S, Anna Carota I, Yamaguchi S, Onay T, Liu P, Ghosh AK, Li C, Eremina V, Hong YK, Economides AN, Vestweber D, Peters KG, Jin J, Quaggin SE. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mirza MA, Capozzi LA, Xu Y, McCullough LD, Liu F. Knockout of vascular early response gene worsens chronic stroke outcomes in neonatal mice. Brain Res Bull. 2013;98:111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Regard JB, Scheek S, Borbiev T, Lanahan AA, Schneider A, Demetriades AM, Hiemisch H, Barnes CA, Verin AD, Worley PF. Verge: a novel vascular early response gene. J Neurosci. 2004;24:4092–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol. 2021;9:664696.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Roberts DD. Thrombospondins: from structure to therapeutics. Cell Mol Life Sci. 2008;65:669–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer. 2009;9:182–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res. 2017;113:858–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wu D, Harrison DL, Szasz T, Yeh CF, Shentu TP, Meliton A, Huang RT, Zhou Z, Mutlu GM, Huang J, Fang Y. Single-cell metabolic imaging reveals a SLC2A3-dependent glycolytic burst in motile endothelial cells. Nat Metab. 2021;3:714–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295:E242–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Leatherdale A, Parker D’A, Tasneem S, Wang Y, Bihan D, Bonna A, Hamaia SW, Gross PL, Ni H, Doble BW, Lillicrap D, Farndale RW, Hayward CPM. Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. J Thromb Haemost. 2021;19:547–61.

    Article  CAS  PubMed  Google Scholar 

  210. Schneller D, Hofer-Warbinek R, Sturtzel C, Lipnik K, Gencelli B, Seltenhammer M, Wen M, Testori J, Bilban M, Borowski A, Windwarder M, Kapel SS, Besemfelder E, Cejka P, Habertheuer A, Schlechta B, Majdic O, Altmann F, Kocher A, et al. Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circ Res. 2019;124:243–55.

  211. Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med. 2013;3.

  212. Westergren-Thorsson G, Hedström U, Nybom A, Tykesson E, Åhrman E, Hornfelt M, Maccarana M, van Kuppevelt TH, Dellgren G, Wildt M, Zhou XH, Eriksson L, Bjermer L, Hallgren O. Increased deposition of glycosaminoglycans and altered structure of heparan sulfate in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol. 2017;83:27–38.

    Article  CAS  PubMed  Google Scholar 

  213. Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol. 2018;68-69:150–66.

    Article  CAS  PubMed  Google Scholar 

  214. Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol. 2017;8:1878.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel S. Knipe.

Ethics declarations

Conflict of interest

E.G.E. does not have any COI or competing interests. T.G.K. has been supported by NIH T32HL116275 without other COI or competing interests. R.S.K is supported by grants from the NIH (K08HL140175 and 1R33HL154125-01) and a Boehringer Ingelheim Discovery ILD Award. She is also supported by the Pulmonary Drug Discovery (PDD) Lab, a collaboration between Massachusetts General Hospital, Brigham and Women’s Hospital and Bayer Pharmaceutical. She has no other COI or competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Lung Injury & Fibrosis

The original online version of this article was revised: Modifications have been made in Figure 1 caption. Full information regarding the corrections made can be found in the erratum/correction for this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelbrecht, E., Kooistra, T. & Knipe, R.S. The Vasculature in Pulmonary Fibrosis. Curr. Tissue Microenviron. Rep. 3, 83–97 (2022). https://doi.org/10.1007/s43152-022-00040-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43152-022-00040-9

Keywords

Navigation