Skip to main content
Log in

Robust MAVE for single-index varying-coefficient models

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2022

This article has been updated

Abstract

In this paper, a robust, efficient and easily implemented estimation procedure for single-index varying-coefficient models is proposed by combining minimum average variance estimation (MAVE) with exponential squared loss. The merit of the proposed method is robust against outliers or heavy-tailed error distributions while asymptotically efficient as the original MAVE under the normal error case. A practical minorization–maximization algorithm is proposed for implementation. Under some regularity conditions, asymptotic distributions of the resulting estimators are derived. Simulation studies and a real data example are conducted to examine the finite sample performance of the proposed method. Both theoretical and empirical findings confirm that our proposed method works very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Fan, J. Q., Yao, Q. W., & Cai, Z. W. (2003). Adaptive varying-coefficient linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, 57–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, J. Q., & Zhang, W. Y. (2008). Statistical methods with varying coefficient models. Statistics and Its Interface, 1, 179–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, S. Y., Tian, P., Hu, Y. P., & Li, G. R. (2021). Estimation in functional single-index varying coefficient model. Journal of Statistical Planning and Inference, 214, 62–75.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, S. Y., & Xue, L. G. (2013). Variable selection for single-index varying-coefficient model. Frontiers of Mathematics in China, 8, 541–565.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, S. Y., & Xue, L. G. (2015). Model detection and estimation for single-index varying coefficient model. Journal of Multivariate Analysis, 139, 227–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28, 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle, W., Hall, P., & Ichimura, H. (1993). Optimal smoothing in single-index models. The Annals of Statistics, 21, 157–178.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, D., & Rubinfeld, D. L. (1978). Hedonic housing pries and the demand for clean air. Journal of Environmental Economics and Management, 5, 81–102.

    Article  MATH  Google Scholar 

  • Hu, T., & Xia, Y. C. (2012). Adaptive semi-varying coefficient model selection. Statistica Sinica, 22, 575–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Z. S., Pang, Z., Lin, B. Q., & Shao, Q. X. (2014). Model structure selection in single-index-coefficient regression models. Journal of Multivariate Analysis, 125, 159–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Y. L. (2015). Robust estimation in partially linear regression models. Journal of Applied Statistics, 42, 2497–2508.

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, Y. L., Ji, Q. H., & Xie, B. J. (2017). Robust estimation for the varying coefficient partially nonlinear models. Journal of Computational and Applied Mathematics, 326, 31–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, P., Zhang, Q. Z., Lian, H., & Wang, Q. H. (2016). Efficient estimation for the heteroscedastic single-index varying coefficient models. Statistics and Probability Letters, 110, 84–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, G. R., Peng, H., Dong, K., & Tong, T. J. (2014). Simultaneous confidence bands and hypothesis testing in single-index models. Statistica Sinica, 24, 937–955.

    MathSciNet  MATH  Google Scholar 

  • Lian, H., Liang, H., & Carroll, R. J. (2015). Variance function partially linear single-index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77, 171–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J. C., Xu, P. R., & Lian, H. (2019). Estimation for single-index models via martingale difference divergence. Computational Statistics and Data Analysis, 137, 271–284.

    Article  MathSciNet  MATH  Google Scholar 

  • Peng, H., & Huang, T. (2011). Penalized least squares for single index models. Journal of Statistical Planning and Inference, 141, 1362–1379.

    Article  MathSciNet  MATH  Google Scholar 

  • Powell, J. L., Stock, J. H., & Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica, 57, 1403–1430.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, J. H., Yang, Q., Li, X. Y., & Song, W. X. (2017). Effects of measurement error on a class of single-index varying coefficient regression models. Computational Statistics, 32, 977–1001.

    Article  MathSciNet  MATH  Google Scholar 

  • Song, Y. Q., Jian, L., & Lin, L. (2016). Robust exponential squared loss-based variable selection for high-dimensional single-index varying-coefficient model. Journal of Computational and Applied Mathematics, 308, 330–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, J. L., Xue, L. G., Zhu, L. X., & Chong, Y. S. (2010). Estimation for a partial-linear single-index model. The Annals of Statistics, 38, 246–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Q. H., & Xue, L. G. (2011). Statistical inference in partially-varying-coefficient single-index model. Journal of Multivariate Analysis, 102, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X. Q., Jiang, Y. L., Huang, M., & Zhang, H. P. (2013). Robust variable selection with exponential squared loss. Journal of the American Statistical Association, 108, 632–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y. C. (2006). Asymptotic distributions for two estimators of the single-index model. Econometric Theory, 22, 1112–1137.

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y. C., & Li, W. K. (1999). On single-index coefficient regression models. Journal of the American Statistical Association, 94, 1275–1285.

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, Y. C., Tong, H., Li, W. K., & Zhu, L. X. (2002). An adaptive estimation of dimension reduction space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 363–410.

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, L. G., & Pang, Z. (2013). Statistical inference for a single-index varying-coefficient model. Statistics and Computing, 23, 589–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, P., Zhu, Z. Y., & Zhang, Z. Z. (2019). Robust exponential squared loss-based estimation in semi-functional linear regression models. Computational Statistics, 34, 503–525.

    Article  MathSciNet  MATH  Google Scholar 

  • Yue, L. L., Li, G. R., & Lian, H. (2019). Identification and estimation in quantile varying-coefficient models with unknown link function. Test, 28(4), 1251–1275.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W. Y., Li, D. G., & Xia, Y. C. (2015). Estimation in generalised varying-coefficient models with unspecified link functions. Journal of Econometrics, 187, 238–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, W. Y., & Zhang, H. (2010). Simultaneous confidence band and hypothesis test in generalised varying-coefficient models. Journal of Multivariate Analysis, 101, 1656–1680.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, Y., Xue, L. G., & Feng, S. Y. (2017). Semiparametric estimation of the single-index varying-coefficient model. Communications in Statistics-Theory and Methods, 46, 4311–4326.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor, Associate Editor, and two anonymous referees for their constructive comments that have led to a substantial improvement of this paper. Yang Zhao’s research was supported by the National Natural Science Foundation of China (12061044, 62163027). Lili Yue’s research was supported by the National Natural Science Foundation of China (12001277). Gaorong Li’s research was supported by the National Natural Science Foundation of China (11871001, 11971001 and 12131006) and the Natural Science Foundations of Shaanxi Province of China (2020JM-571).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaorong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to missing a part of equations in the Appendix.

Appendices

Appendix: Proofs of main results

For convenience of presentation, we denote \(\varphi _{\gamma }(t)=\exp (-t^2/\gamma )\), \(\varvec{\mu }_{\varvec{\theta }}({\varvec{x}})=E({\varvec{X}} \vert \varvec{\theta }^{\mathrm{T}}{\varvec{X}}=\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\), \(\delta _{\varvec{\theta }}=\Vert \varvec{\theta }-\varvec{\theta }_{0} \Vert\) and \(\delta _{n}=\{ \log n /(nh)\}^{1/2}\).

Proof of Theorem 1

Proof

From (7), we directly consider the maximization of the following objective function

$$\begin{aligned} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi _{\gamma } \big (Y_{i}- {\varvec{a}}^{\mathrm{T}}{\varvec{Z}}_{i}-{\varvec{d}}^\mathrm{T}{\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0} \big ). \end{aligned}$$
(13)

Let \((\tilde{\varvec{a}},\tilde{\varvec{d}})\) be the maximizer of (13), and it satisfies the following equation

$$\begin{aligned} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi '_{\gamma } \big (Y_{i}-\tilde{\varvec{a}}^{\mathrm{T}}{\varvec{Z}}_{i}-\tilde{\varvec{d}}^{\mathrm{T}}{\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0} \big ) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} =0. \end{aligned}$$
(14)

Denote \(r_{i}={\varvec{g}}_{0}^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} -{\varvec{g}}_{0}^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i}-{\varvec{g}}_{0}'^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}\), we have

$$\begin{aligned} Y_{i}-\tilde{\varvec{a}}^{\mathrm{T}}{\varvec{Z}}_{i}-\tilde{\varvec{d}}^{\mathrm{T}}{\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}&=\epsilon _{i} +r_{i} -\big \{ \tilde{\varvec{a}}-{\varvec{g}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}) \big \}^{\mathrm{T}}{\varvec{Z}}_{i} \\&~~~~ -\big \{ \tilde{\varvec{d}}-{\varvec{g}}_{0}'(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}) \big \}^{\mathrm{T}} {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}. \end{aligned}$$

By Taylor expansion and (14), it follows that

$$\begin{aligned} \begin{pmatrix} \tilde{\varvec{a}} \\ \tilde{\varvec{d}}h \end{pmatrix}&= \begin{pmatrix} {\varvec{g}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}) \\ {\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}})h \end{pmatrix} + \mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi '_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} \nonumber \\&~~~~ +\mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} r_{i}, \end{aligned}$$
(15)

where

$$\begin{aligned} \mathbf{S}_{n}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})=\frac{1}{n}\sum \limits _{i=1}^{n}&K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix}^{\mathrm{T}} \\&~ \times \big \{1+O_{p}(h^{2}+\delta _{n}) \big \}. \end{aligned}$$

By some direct calculations, we obtain

$$\begin{aligned} \mathbf{S}_{n}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})&= \begin{pmatrix} f_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) &{} h\big \{ f_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \big \}' \\ h\big \{ f_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \big \}' &{} f_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \end{pmatrix} E\big \{ \varphi _{\gamma }''(\epsilon ) \big \} \nonumber \\&~~~~ + O_{p}(h^{2}+\delta _{n}), \nonumber \\ r_{i}&={\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i}(\varvec{\theta }_{0}-\varvec{\theta })^{\mathrm{T}}{\varvec{X}}_{i0} +\frac{1}{2}{\varvec{g}}''^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i} \big \{ \varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i0} \big \}^{2} \nonumber \\&~~~~ +R(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i},\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}},{\varvec{Z}}_{i}), \end{aligned}$$
(16)

where \(R(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i},\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}},{\varvec{Z}}_{i})\) is defined as remainder.

Using the fact \((\mathbf{A}+\mathbf{B}h)^{-1}=\mathbf{A}^{-1}-h\mathbf{A}^{-1}{} \mathbf{B}{} \mathbf{A}^{-1}+O(h^2)\), for the third term on the right-hand side of (15), we have

$$\begin{aligned}&\mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i}{\varvec{X}}_{i0}^{\mathrm{T}}(\varvec{\theta }_{0}-\varvec{\theta }) \\&~~ =\begin{pmatrix} \big \{ \mathbf{D}_{\varvec{\theta }}^{-1}(\varvec{\theta }^\mathrm{T}{\varvec{x}})\mathbf{C}_{\varvec{\theta }}^{\mathrm{T}}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) -{\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{x}}^{\mathrm{T}} \big \}(\varvec{\theta }_{0}-\varvec{\theta }) + O_{p}(h\delta _{\varvec{\theta }}+\delta _{n}\delta _{\varvec{\theta }}) \\ O_{p}(h\delta _{\varvec{\theta }}+\delta _{n}\delta _{\varvec{\theta }}) \end{pmatrix}, \\&\mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} {\varvec{g}}''^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{Z}}_{i}\{\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}\}^{2} \\&~~ =\begin{pmatrix} {\varvec{g}}''_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}})h^{2}\mu _{2} +O_{p}(h^{3}+h^{2}\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}) \\ O_{p}(h^{3}+h^{2}\delta _{\varvec{\theta }}+h\delta _{\varvec{\theta }}) \end{pmatrix}, \\&\mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} R(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i},\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}},{\varvec{Z}}_{i}) \\&~~ =\begin{pmatrix} O_{p}(h^{2}\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}) \\ O_{p}(h^{3}+h^{2}\delta _{\varvec{\theta }}+h\delta _{\varvec{\theta }}^{2}+\delta _{n}\delta _{\varvec{\theta }}^{2}) \end{pmatrix}. \end{aligned}$$

For the second term on the right-hand side of (15), we can write

$$\begin{aligned} \mathbf{S}_{n}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi '_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}/h \end{pmatrix} =\begin{pmatrix} {\varvec{r}}_{n,1}({\varvec{x}}) \\ {\varvec{r}}_{n,2}({\varvec{x}}) \end{pmatrix} +O_{p}(h\delta _{n}), \end{aligned}$$

where \({\varvec{r}}_{n,1}({\varvec{x}})=\big [n f_{\varvec{\theta }}(\varvec{\theta }^\mathrm{T}{\varvec{x}}) \mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) E\{ \varphi _{\gamma }''(\epsilon ) \} \big ]^{-1} \sum _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi '_{\gamma }(\epsilon _{i}) {\varvec{Z}}_{i},\) \({\varvec{r}}_{n,2}({\varvec{x}})=\big [n f_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) \mathbf{D}_{\varvec{\theta }}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}}) E\{ \varphi _{\gamma }''(\epsilon ) \} \big ]^{-1} \sum _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0}) \varphi '_{\gamma }(\epsilon _{i}) \big ( \varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ix}/h \big ) {\varvec{Z}}_{i}.\)

Combining the above equations, we have

$$\begin{aligned} \tilde{\varvec{a}}&={\varvec{g}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}) +\big \{ \mathbf{D}_{\varvec{\theta }}^{-1}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})\mathbf{C}_\mathbf{\theta }^{\mathrm{T}}(\varvec{\theta }^{\mathrm{T}}{\varvec{x}})-{\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}}){\varvec{x}}^{\mathrm{T}} \big \}(\varvec{\theta }_{0}-\varvec{\theta }) +\frac{1}{2}{\varvec{g}}''_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}})h^{2}\mu _{2} \\&~~~~ +{\varvec{r}}_{n,1}({\varvec{x}})+O_{p}(h^{3}+h^{2}\delta _{n}+h\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}), \\ \tilde{\varvec{d}}&={\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{x}})+h^{-1}{\varvec{r}}_{n,2}({\varvec{x}}) +O_{p}(\delta _{n}+\delta _{\varvec{\theta }}+h^{-1}\delta _{n}\delta _{\varvec{\theta }}). \end{aligned}$$

Let \(\tilde{\varvec{a}}_{j}\) and \(\tilde{\varvec{d}}_{j}\) be, respectively, the values of \(\tilde{\varvec{a}}\) and \(\tilde{\varvec{d}}\) with \({\varvec{x}}\) replaced by \({\varvec{X}}_{j}\). Replacing \(({\varvec{a}}_{j},{\varvec{d}}_{j})\) in (6) with \((\tilde{\varvec{a}}_{j}\), \(\tilde{\varvec{d}}_{j})\), and denoting \(\Delta _{ij}={\varvec{g}}_{0}^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i}-\tilde{\varvec{a}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i}-\tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i}\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{ij}\), we obtain

$$\begin{aligned} \frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi '_{\gamma }\big ( \epsilon _{i}+\Delta _{ij}-\tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i}{\varvec{X}}_{ij}^{\mathrm{T}} (\varvec{\theta }-\varvec{\theta }_{0}) \big ) \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i}{\varvec{X}}_{ij} /\varsigma _{\varvec{\theta }}({\varvec{X}}_{j}) =0, \end{aligned}$$
(17)

where \(\varsigma _{\varvec{\theta }}({\varvec{x}})=n^{-1}\sum _{i=1}^{n}K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{i0})\).

Let

$$\begin{aligned}&\mathbf{M}_{n}=\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \big \{\tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} \big \}^{2} {\varvec{X}}_{ij}{\varvec{X}}_{ij}^{\mathrm{T}} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}), \\&{\varvec{N}}_{n1}=\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi '_{\gamma }(\epsilon _{i}) \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}), \\&{\varvec{N}}_{n2}=\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij} \tilde{\varvec{d}}_{j}^\mathrm{T}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}). \end{aligned}$$

Using the condition \(\varvec{\theta }\in {\varvec{\Theta }}_{n}\) and exchanging the order of the summation, we have

$$\begin{aligned} \mathbf{M}_{n}&=\frac{1}{n}\sum \limits _{i=1}^{n}\varphi ''_{\gamma }(\epsilon _{i}) \big \{ {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}} {\varvec{X}}_{i}){\varvec{Z}}_{i} \big \}^{2} \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \} \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \}^{\mathrm{T}} \\&~~~~ +\frac{1}{n}\sum \limits _{i=1}^{n}\varphi ''_{\gamma }(\epsilon _{i}) \big \{ {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} \big \}^{2} E\big [ \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \} \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \}^{\mathrm{T}} \big ] \\&~~~~ +O_{p}(h^{-1}\delta _{n}+h+\delta _{\theta }) \\&= \mathbf{W}_{0} E\big \{ \varphi ''_{\gamma }(\epsilon ) \big \}+O_{p}(h^{-1}\delta _{n}+h+\delta _{\varvec{\theta }}), \\ {\varvec{N}}_{n1}&=\frac{1}{n}\sum \limits _{i=1}^{n} \big \{ {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} \big \} \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \} \varphi '_{\gamma }(\epsilon _{i}) \\&~~~~ +O_{p}(h^{3}+h\delta _{\varvec{\theta }}+h^{-1}\delta _{n}^{2}+h^{-1}\delta _{n}\delta _{\varvec{\theta }}), \end{aligned}$$

where

$$\begin{aligned} \mathbf{W}_{0}=E\big [\big \{ {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^\mathrm{T}{\varvec{X}}){\varvec{Z}} \big \}^{2} \big \{ {\varvec{X}}{\varvec{X}}^{\mathrm{T}} -{\varvec{X}}\varvec{\mu }_{\varvec{\theta }_{0}}^{\mathrm{T}}({\varvec{X}}) -\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}){\varvec{X}}^{\mathrm{T}} +E({\varvec{X}}{\varvec{X}}^{\mathrm{T}} \vert \varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) \big \}\big ]. \end{aligned}$$

By the expansions of \(\tilde{\varvec{a}}\) and \(\tilde{\varvec{d}}\), we have

$$\begin{aligned} \Delta _{ij}&=-{\varvec{Z}}_{i}^{\mathrm{T}}{\varvec{r}}_{n,1}({\varvec{X}}_{j}) +\big \{ {\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{j})-\tilde{\varvec{d}}_{j} \big \}^{\mathrm{T}} \varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{ij} \nonumber \\&\quad +\frac{1}{2}{\varvec{g}}''^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{j}){\varvec{Z}}_{i} \big \{(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{ij})^{2}-h^{2}\mu _{2} \big \} \nonumber \\&\quad +{\varvec{Z}}_{i}^{\mathrm{T}} \big \{\mathbf{D}_{\varvec{\theta }}^{-1}(\varvec{\theta }^{T}{\varvec{X}}_{j}) \mathbf{C}_{\varvec{\theta }}^{\mathrm{T}}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{j}) -{\varvec{g}}'_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{j}){\varvec{X}}_{j}^{\mathrm{T}} \big \}(\varvec{\theta }_{0}-\varvec{\theta }) \nonumber \\&\quad +\big \{ O_{p}(h^{3}+h^{2}\delta _{n}+h\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}) \vert {\varvec{Z}}_{i} \vert +R(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i},\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{j},{\varvec{Z}}_{i}) \big \} \nonumber \\&\equiv -\Delta _{ij}^{1}+\Delta _{ij}^{2}+\Delta _{ij}^{3}+\Delta _{ij}^{4}+\Delta _{ij}^{5}, \end{aligned}$$
(18)

where \(R(\varvec{\theta }_{0}^{\mathrm{T}}\mathrm{X}_{i},\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{j},{\varvec{Z}}_{i})\) is defined in (16). For (18), we obtain

$$\begin{aligned}&\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij}^{1} \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}) \\&\quad =O_{p}(h^{3}+h\delta _{\varvec{\theta }}+h^{-1}\delta _{n}^{2}+h^{-1}\delta _{n}\delta _{\varvec{\theta }}), \\&\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij}^{2} \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}) \\&\quad =O_{p}(h^{3}+h\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}+h^{-1}\delta _{n}\delta _{\varvec{\theta }}), \\&\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij}^{3} \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}) \\&\quad =O_{p}(h^{3}+h\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}), \\&\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij}^{4} \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\mathrm{\theta }}({\varvec{X}}_{j}) \\&~~ =\mathbf{W}_{1}(\varvec{\theta }-\varvec{\theta }_{0})E\{\varphi ''_{\gamma }(\epsilon )\} +O_{p}(h^{-1}\delta _{n}\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}), \\&\frac{1}{n^{2}}\sum \limits _{j=1}^{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }^{\mathrm{T}}{\varvec{X}}_{ij}) \varphi ''_{\gamma }(\epsilon _{i}) \Delta _{ij}^{5} \tilde{\varvec{d}}_{j}^{\mathrm{T}}{\varvec{Z}}_{i} {\varvec{X}}_{ij} \big / \varsigma _{\varvec{\theta }}({\varvec{X}}_{j}) \\&~~ =O_{p}(h^{3}+h\delta _{\varvec{\theta }}+h\delta _{n}+\delta _{\varvec{\theta }}^{2}), \end{aligned}$$

where \(\mathbf{W}_{1}=E\big [ \mathbf{T}_{\varvec{\theta }_{0}}(\varvec{\theta }_{0}^\mathrm{T}{\varvec{X}}) \mathbf{D}_{\varvec{\theta }_{0}}^{-1}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) \mathbf{T}_{\varvec{\theta }_{0}}^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) \big ]\) and \(\mathbf{T}_{\varvec{\theta }_{0}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) =\mathbf{C}_{\varvec{\theta }_{0}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) -{\varvec{X}}{\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}) \mathbf{D}_{\varvec{\theta }_{0}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}})\). Then, we have

$$\begin{aligned} {\varvec{N}}_{n2}=\mathbf{W}_{1} E\big \{ \varphi ''_{\gamma }(\epsilon ) \big \} (\varvec{\theta }-\varvec{\theta }_{0}) +O_{p}(h^{3}+h\delta _{\varvec{\theta }}+h^{-1}\delta _{n}^{2}+h^{-1}\delta _{n}\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}). \end{aligned}$$

From the above equations and Taylor expansion for (17), we have

$$\begin{aligned} \mathbf{W}_{0} E\big \{ \varphi ''_{\gamma }(\epsilon ) \big \} (\varvec{\theta }-\varvec{\theta }_{0})&=\frac{1}{n}\sum \limits _{i=1}^{n} \big \{{\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} \big \} \big \{{\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \} \varphi '_{\gamma }(\epsilon _{i}) \\&\quad +\mathbf{W}_{1} E\big \{ \varphi ''_{\gamma }(\epsilon ) \big \} (\varvec{\theta }-\varvec{\theta }_{0}) \\&\quad +O_{p}(h^{3}+h\delta _{\varvec{\theta }}+h^{-1}\delta _{n}^{2} +h^{-1}\delta _{n}\delta _{\varvec{\theta }}+\delta _{\varvec{\theta }}^{2}). \end{aligned}$$

Following the proof of Theorem 4.2 in Xia (2006), we obtain

$$\begin{aligned} \hat{\varvec{\theta }}-\varvec{\theta }_{0}&={\varvec{\Sigma }}_{0}^{-} E^{-1}\big \{ \varphi ''_{\gamma }(\epsilon ) \big \} \frac{1}{n}\sum \limits _{i=1}^{n} \big \{ {\varvec{g}}'^{\mathrm{T}}_{0}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} \big \} \big \{ {\varvec{X}}_{i}-\varvec{\mu }_{\varvec{\theta }_{0}}({\varvec{X}}_{i}) \big \} \varphi '_{\gamma }(\epsilon _{i}) \\&\quad +o_{p}(n^{-1/2}), \end{aligned}$$

where \({\varvec{\Sigma }}_{0}=\mathbf{W}_{0}-\mathbf{W}_{1}\). Under the assumptions of Theorem 1, it then follows from the above equation and the central limit theorem. \(\square\)

Proof of Theorem 2

Proof

From (15) in Theorem 1, we have

$$\begin{aligned} \begin{pmatrix} \hat{\varvec{g}}(u) \\ h\hat{\varvec{g}}'(u) \end{pmatrix}&=\begin{pmatrix} {\varvec{g}}_{0}(u) \\ {\varvec{g}}'_{0}(u)h \end{pmatrix} + \hat{\mathbf{S}}_{n}^{-1}(u) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u) \varphi '_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u)/h \end{pmatrix} \\&\quad +\hat{\mathbf{S}}_{n}^{-1}(u) \frac{1}{n} \sum \limits _{i=1}^{n} K_{h}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u)\varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u)/h \end{pmatrix} r_{i}(u), \end{aligned}$$

where \(r_{i}(u)={\varvec{g}}_{0}^{\mathrm{T}}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}){\varvec{Z}}_{i} -{\varvec{g}}_{0}^{\mathrm{T}}(u){\varvec{Z}}_{i}-{\varvec{g}}_{0}'^{\mathrm{T}}(u){\varvec{Z}}_{i}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}-u)\), and

$$\begin{aligned} \hat{\mathbf{S}}_{n}(u)&=\frac{1}{n}\sum \limits _{i=1}^{n} K_{h}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u) \varphi ''_{\gamma }(\epsilon _{i}) \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u)/h \end{pmatrix} \begin{pmatrix} {\varvec{Z}}_{i} \\ {\varvec{Z}}_{i}(\hat{\varvec{\theta }}^{\mathrm{T}}{\varvec{X}}_{i}-u)/h \end{pmatrix} ^{\mathrm{T}} \\&\quad \times \big \{ 1+O_{p}(h^{2}+\delta _{n}) \big \}. \end{aligned}$$

Note that Theorem 1 implies \(\Vert \hat{\varvec{\theta }}-\varvec{\theta }_{0} \Vert =O_{p}(n^{-1/2})\). Therefore, we have

$$\begin{aligned} \hat{\varvec{g}}(u)&={\varvec{g}}_{0}(u)+f_{\varvec{\theta }_{0}}^{-1}(u)\mathbf{D}_{\varvec{\theta }_{0}}^{-1}(u) E^{-1}\big \{ \varphi ''_{\gamma }(\epsilon ) \big \} \frac{1}{n}\sum \limits _{i=1}^{n} K_{h}(\varvec{\theta }_{0}^{\mathrm{T}}{\varvec{X}}_{i}-u) {\varvec{Z}}_{i} \varphi '_{\gamma }(\epsilon _{i}) \\&\quad +\frac{h^{2}}{2}\mu _{2}{\varvec{g}}_{0}''(u) +o_{p}(h^{2}). \end{aligned}$$

The proof of Theorem 2 is completed by applying Slutsky’s theorem and the central limit theorem. \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yue, L. & Li, G. Robust MAVE for single-index varying-coefficient models. J. Korean Stat. Soc. 51, 1302–1325 (2022). https://doi.org/10.1007/s42952-022-00187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-022-00187-z

Keywords

Navigation