Skip to main content

Advertisement

Log in

Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The signal crosstalk and electromagnetic interference (EMI) problems direly need to be resolved in the rapid development of modern microwave communication technology for a better working frequency and transmission power of electronic systems. Where the new absorbing materials such as molybdenum disulfide (MoS2)/titania (TiO2)/Ti2CTx and MoS2/Ti2CTx composites could meet the requirement of “thin, strong, light weight, and wide band” for excellent absorbing performance. In this work, a lighter Ti2CTx material was selected as the matrix, and MoS2 was in-situ grown on Ti2CTx matrix by traditional hydrothermal method and microwave solvothermal method. The fabricated composite exhibited synergic effect of two-dimensional heterostructural interface and double dielectric elements, where a small amount of TiO2 and a certain proportion of MoS2 jointly improve the impedance matching of the composite material. In here, the extreme reflection loss (RLmin) can reach − 54.70 dB (with a frequency of 7.59 GHz, 3.39 mm thickness), and the maximum effective absorption bandwidth (EABmax) can reach 4 GHz. Polyethylene glycol 200 was used as the solvent instead of water to make Ti2CTx less oxidized during the composite process, where the microwave heating would attain fast speed, short time, high efficiency, and uniform product. Since, the MoS2/Ti2CTx composite without oxidizing possessed a wider effective absorption bandwidth (EAB) at a thinner thickness, thus resulting in the excellent microwave absorption performance and confirming the validity and rationality of new microwave absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen Z, Xu C, Ma C, Ren W, Cheng H (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300

    Article  CAS  Google Scholar 

  2. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chen M, Kim J (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26(31):5480–5487

    Article  CAS  Google Scholar 

  3. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906

    Article  CAS  Google Scholar 

  4. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu B, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2022) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148(10):250–259

    Google Scholar 

  5. Guo Y, Wang D, Wang J, Tian Y, Liu H, Liu C, Shen C (2022) Hierarchical HCF@NC/Co derived from hollow Loofah fiber anchored with metal−organic frameworks for highly efficient microwave absorption. ACS Appl Mater Interfaces 14:2038–2050

    Article  CAS  Google Scholar 

  6. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Xu B, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118–137

    Article  CAS  Google Scholar 

  7. Yao F, Xie W, Ma C, Wang D, El-Bahy ZM, Helal HM, Liu H, Du A, Guo Z, Gu Z (2022) Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos Part B-Eng 245

  8. Feng S, Zhai F, Su H, Sridhar D, Algadi H, Xu B, Pashameah RA, Alzahrani E, Abo-Dief HM, Ma Y, Li T, Guo Z (2022) Progress of metal organic frameworks-based composites in electromagnetic wave absorption. Mater Today Phys 30

  9. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Min H, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23(37):4248–4253

    Article  CAS  Google Scholar 

  10. Wan L, Chua DHC, Sun H, Chen L, Wang K, Lu T, Pan L (2021) Construction of two-dimensional bimetal (Fe-Ti) oxide/carbon/ MXene architecture from titanium carbide MXene for ultrahigh rate lithium-ion storage. J Colloid Interf Sci 588:147–156

    Article  CAS  Google Scholar 

  11. Miao B, Zhang Y, Chen Q, Zhang Y, Cao Y, Bai Z, Chen L (2022) Highly enhanced photocatalytic hydrogen production performance of hetero structured Ti3C2/TiO2/rGO composites. Langmuir 38:15579–15591

    Article  CAS  Google Scholar 

  12. Sivasankarapillai VS, Sharma TSK, Hwa KY, Wabaidur SM, Angaiah S, Dhanusuraman R (2022) MXene based sensing materials: current status and future perspectives. ES Energy Environ 15:4–14

    CAS  Google Scholar 

  13. Qing Y, Zhou W, Luo F, Zhou D (2016) Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 42(14):16412–16416

    Article  CAS  Google Scholar 

  14. Han M, Yin X, Wu H, Hou Z, Chen L (2018) Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-Band. ACS Appl Mater Interfaces 8(32):21011–21019

    Article  Google Scholar 

  15. Asia S, Alessia P, Liu Y, Dandekar K, Anasori B (2018) 2D titanium carbide (MXene) for wireless communication. Sci Adv 4(9)

  16. Guo R, Fan Y, Wang L, Jiang W (2020) Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon 169:214–224

    Article  CAS  Google Scholar 

  17. Li X, Yin X, Han M, Song C, Sun X, Xu H, Cheng L, Zhang L (2017) A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTX MXene. J Mater Chem C 5(30):7621–7628

    Article  CAS  Google Scholar 

  18. Yang Y, Umrao S, Lai S, Lee S (2017) Large-area highly conductive transparent two-dimensional Ti2CTx film. J Phys Chem Lett 8(4):859–865

    Article  CAS  Google Scholar 

  19. Li J, Du Y, Huo C, Wang S, Chong C (2015) Thermal stability of two-dimensional Ti2C nanosheets. Ceram Int 41(2):2631–2635

    Article  CAS  Google Scholar 

  20. Rakhi RB, Ahmed B, Hedhil MN, Anjum DH, Alshareef HN (2015) Effect of post etch annealing gas composition on the structural and electro-chemical properties of Ti2CTx MXene electrodes for super capacitor applications. Chem Mater 27(15):5314–5323

    Article  CAS  Google Scholar 

  21. Li X, Wen C, Yang L, Zhang R, Li Y, Che R et al (2021) Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J Alloy Compd 869:159365

    Article  CAS  Google Scholar 

  22. Wang J, Liu L, Jiao S, Ma K, Lv J, Yang J (2020) Hierarchical carbon Fiber@MXene@MoS2 core‐sheath synergistic microstructure for tunable and efficient microwave Absorptio. Adv Funct Mater 30(45):2002595.1–2002595.10

  23. Liu Z, Cui Y, Li Q, Zhang Q, Zhang B (2022) Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J Colloid Interf Sci 607:633–644

    Article  CAS  Google Scholar 

  24. Fan B, Muhammad T, Chen Q, Wei F, Du H, Ouyang B, Kan E, Chen Y, Zhao B, Zhang R (2022) Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2Tx heterostructure for enhanced microwave absorbing performance. J Alloy Compd 923(25)

  25. Mondal K, Ghosh P (2019) Exfoliation of Ti2C and Ti3C2 Mxenes from bulk trigonal phases of titanium carbide: a theoretical prediction. Solid State Commun 299:113657

    Article  CAS  Google Scholar 

  26. Yu H, Xu K, Zhang Z, Weng J, Wu J (2021) Oxygen functionalization-induced crossover in the tensile properties of the thinnest 2D Ti2C MXene. Mater Chem C 9(7):2416–2425

    Article  CAS  Google Scholar 

  27. Liu N, GuoY YX, Lin H, Yang L, Shi Z, Zhong Z, Wang S, Tang Y, Gao Q (2015) Microwave-assisted reactant-protecting strategy toward efficient MoS2 electrocatalysts in hydrogen evolution reaction. ACS Appl Mater Interfaces 7:23741–23749

    Article  CAS  Google Scholar 

  28. Zhou J, Zhang, G, Luo, J, Hu Y, Hao G, Guo H, Guo F, Wang S, Jiang W (2021) A MOFs-derived 3D superstructure nanocomposite as excellent microwave absorber. Chem Eng J 426

  29. Li Q, Zhong B, Zhang W, Jia Z, Jia D, Qin S, Wang J, Razal JM, Wang X (2019) Ti3C2 MXene as A new nanofiller for robust and conductive elastomer composites. Nanoscale 11:14712–14719

    Article  CAS  Google Scholar 

  30. Wang H, Zhao R, Hu H, Fan X, Zhang D (2020) Wang D (2020) 0D/2D Heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. Acs Appl Mater 12:40176–40185

    Article  CAS  Google Scholar 

  31. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12:986–993

    Article  CAS  Google Scholar 

  32. Ahmed R, Si R, Rehman SU, Yu Y, Li, Q, Wang C (2021) High dielectric constant and low temperature ferroelectric-phase-transition in Ca, Pb co-doped BiFeO3. Results Phys 20

  33. Ahmed R, Wang J, Si R, Rehman SU, Li T, Bi H, Yu Y, Li Q, Li Y, Huang S, Guo Y, Wang C (2021) Jahn-Teller assisted polaronic electron hopping in LiCuNb3O9. Eur Ceram Soc 41:2625–2632

    Article  CAS  Google Scholar 

  34. Aslam MA, Ding W, Rehman, SU, Hassan A, Bian YC, Liu, Q, Sheng Z (2021) Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl Surf Sci 543

  35. Liu Y, Zhang S, Su X, Xu J, Li Y (2020) Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J Mater Sci 55:10339–10350

    Article  CAS  Google Scholar 

  36. Th A, Qi L, Zhang Y, Zhu W, Yu K, Wang S, Xu Q, Liang S, Wang L (2020) Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability - ScienceDirect. Appl Catal B 273

  37. Wu N, Zhao B, Chen X, Hou C, Huang M, Alhadhrami A, Mersal GAM, Ibrahim MM, Tian J (2022) Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv Compos Hybrid Mater 5:1548–1556

    Article  CAS  Google Scholar 

  38. Zhang Z, Liu M, Ibrahim MM, Wu K, Li Y, Mersal GAM, Azab IHE, El-Bahy SM, Huang M, Jiang Y, Liang G, Xie P, Liu C (2022) Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv Compos Hybrid Mater 5:1054–1066

    Article  CAS  Google Scholar 

  39. Xie P, Shi Z, Feng M, Sun K, Liu Y, Yan K, Liu C, Moussa TAA, Huang M, Meng S, Liang G, Hou H, Fan R, Guo Z (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695

    Article  Google Scholar 

  40. Han M, Yin X, Kong L, Li M, Duan W, Zhang L, Cheng L (2014) Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater 2:16403–16409

    CAS  Google Scholar 

  41. Liu Z, Wu C, Wang Y, Xian G, Zhu Z, Xie N, Wang Y, Liu Y, Kong L (2022) MXene/CoS heterostructures self-assembled through electrostatic interaction as superior microwave absorber. J Alloy Compd 900

  42. Wang P, Cheng L, Zhang L (2017) One-dimensional carbon/SiC nanocomposites with tunable dielectric and broadband electromagnetic wave absorption properties. Carbon 125:207–220

    Article  CAS  Google Scholar 

  43. Chen Y, Gao P, Zhu C, Wang R, Wang L, Cao M, Fang X (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. Appl Phys 106

  44. Zhang X, Dong X, Huang H, Liu Y, Wang W, Zhu, X, Lv, B, Lei J, Lee C (2006) Microwave absorption properties of the carbon-coated nickel nano capsules. Appl Phys Lett 89

  45. Zhao B, Guo X, Zhao W, Deng J, Shao G, Fan B, Bai Z, Zhang R (2016) Yolk-Shell Ni@SnO2 Composites with a designable interspace to improve electromagnetic wave absorption properties. ACS Appl Mater 8:28917–28925

    Article  CAS  Google Scholar 

  46. Hassan A, Aslam MA, Bilal M, Khan MS, Rehman SU, Ma K, Wang J, Sheng Z (2021) Modulating dielectric loss of MoS2@Ti3C2Tx Nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations. Ceram Int 47:20706–20716

    Article  CAS  Google Scholar 

  47. Cao M, Cai Y, He P, Shu J, Cao W, Yuan J (2019) 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302

    Article  CAS  Google Scholar 

  48. Ning M, Lu M, Li J (2015) Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance[J]. Nanoscale 7:15734

  49. Wang Y, Chen D, Yin X, Xu P, Wu F, He M (2015) Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater 7:26226–26234

    Article  CAS  Google Scholar 

  50. Li X, Yin X, Han M, Song C, Xu H, Hou Z, Zhang L, Cheng L (2017) Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. RSC 5:4068–4074

    CAS  Google Scholar 

  51. Liu P, Yao Z, Ng V, Zhou J, Kong L, Yue K (2018) Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos Part A-Appl S 115:371–382

    Article  CAS  Google Scholar 

  52. Wang H, Ma H (2019) The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J Mater Sci-Mater EL 30:15250–15256

    Article  CAS  Google Scholar 

  53. Yang J, Wang J, Li H, Wu Z, Xing Y, Chen Y, Liu L (2022) MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv Sci 9

  54. Xu H, Yin X, Li X, Li M, Zhang L, Cheng L (2019) Thermal stability and dielectric properties of 2D Ti2C MXenes via annealing under a gas mixture of Ar and H2 atmosphere. Funct Compos Struct 1(1)

  55. Zhang S, Cheng B, Jia X, Zhao Z, Jin X, Zhao Z, Wu G (2022) The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater 5:1658–1698

    Article  Google Scholar 

Download references

Funding

The research was supported by the Key Scientific Research projects of Colleges and Universities in Henan Province (21A430009), Henan Provincial Science and Technology R&D Plan Joint Fund (Application Research) Project (222103810045), and Natural science Project of Zhengzhou Science and Technology Bureau (Special project of collaborative innovation) (22ZZRDZX02).

Author information

Authors and Affiliations

Authors

Contributions

Baoji Miao, Yange Cao, and Qingsong Zhu conceived the idea, designed the experiments, and wrote the paper. Muhammad Asif Nawaz, Jose Antonio Ordiozola, Tomas Ramirez Reina, and Zhiming Bai planned and performed the experiments and collected and analyzed the data. Junna Ren and Fengchun Wei helped with characterization of the materials and discussed data. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qingsong Zhu, Muhammad Asif Nawaz or Zhiming Bai.

Ethics declarations

Conflict of interest

The authors declare no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 448 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, B., Cao, Y., Zhu, Q. et al. Scalable synthesis of 2D Ti2CTx MXene and molybdenum disulfide composites with excellent microwave absorbing performance. Adv Compos Hybrid Mater 6, 61 (2023). https://doi.org/10.1007/s42114-023-00643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00643-2

Keywords

Navigation