Skip to main content
Log in

Abstract

The study of knots and links from a probabilistic viewpoint provides insight into the behavior of “typical” knots, and opens avenues for new constructions of knots and other topological objects with interesting properties. The knotting of random curves arises also in applications to the natural sciences, such as in the context of the structure of polymers. We present here several known and new randomized models of knots and links. We review the main known results on the knot distribution in each model. We discuss the nature of these models and the properties of the knots they produce. Of particular interest to us are finite type invariants of random knots, and the recently studied Petaluma model. We report on rigorous results and numerical experiments concerning the asymptotic distribution of such knot invariants. Our approach raises questions of universality and classification of the various random knot models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adams, C.: The Knot Book. American Mathematical Society, Providence, RI (1994)

  • Adams, C., Kehne, G.: Bipyramid decompositions of multi-crossing link complements (2016). arXiv:1610.03830

  • Adams, C.: Bipyramids and bounds on volumes of hyperbolic links. Topol. Appl. 222, 100–114 (2017)

  • Adams, C., Crawford, T., DeMeo, B., Landry, M., Lin, A.T., Montee, M.K., Park, S., Venkatesh, S., Yhee, F.: Knot projections with a single multi-crossing. J. Knot Theory Ramif. 24(03), 1550011 (2015a)

    Article  MathSciNet  MATH  Google Scholar 

  • Adams, C., Capovilla-Searle, O., Freeman, J., Irvine, D., Petti, S., Vitek, D., Weber, A., Zhang, S.: Bounds on übercrossing and petal numbers for knots. J. Knot Theory Ramif. 24(02), 1550012 (2015b)

    Article  MATH  Google Scholar 

  • Adler, R.J., Bobrowski, O., Borman, M.S., Subag, E., Weinberger, S., et al.: Persistent homology for random fields and complexes. In: Borrowing strength: theory powering applications–a Festschrift for Lawrence D. Brown, pp. 124–143. Institute of Mathematical Statistics (2010)

  • Agol, I., Hass, J., Thurston, W.: The computational complexity of knot genus and spanning area. Trans. Am. Math. Soc. 358(9), 3821–3850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. Algorithmica 55(3), 395–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28, 562–586 (1926)

  • Alexander, J.W.: Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  • Alon, N., Spencer, J.H.: The probabilistic method. Wiley, Hoboken, NJ (2000)

  • Alvarado, S., Calvo, J.A., Millett, K.C.: The generation of random equilateral polygons. J. Stat. Phys. 143(1), 102–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Arsuaga, J., Diao, Y.: DNA knotting in spooling like conformations in bacteriophages. Comput. Math. Methods Med. 9(3–4), 303–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Arsuaga, J., Vázquez, M., Trigueros, S., Roca, J., et al.: Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. 99(8), 5373–5377 (2002)

    Article  Google Scholar 

  • Arsuaga, J., Vazquez, M., McGuirk, P., Trigueros, S., Roca, J., et al.: DNA knots reveal a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA 102(26), 9165–9169 (2005)

    Article  Google Scholar 

  • Arsuaga, J., Blackstone, T., Diao, Y., Karadayi, E., Saito, M.: Linking of uniform random polygons in confined spaces. J. Phys. A: Math. Theor. 40(9), 1925 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  • Arsuaga, J., Blackstone, T., Diao, Y., Hinson, K., Karadayi, E., Saito, M.: Sampling large random knots in a confined space. J. Phys. A Math. Theor. 40(39), 11697 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ashton, T., Cantarella, J., Chapman, H.: plCurve (2016). http://www.jasoncantarella.com/wordpress/software/plcurve. Accessed 14 Dec 2016

  • Atapour, M., Soteros, C.E., Ernst, C., Whittington, S.G.: The linking probability for 2-component links which span a lattice tube. J. Knot Theory Ramif. 19(01), 27–54 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Atapour, M., Soteros, C.E., Sumners, D.W., Whittington, S.G.: Counting closed 2-manifolds in tubes in hypercubic lattices. J. Phys. A Math. Theor. 48(16), 165002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bar-Natan, D., Morrison, S., et al. The knot atlas (2016a). http://katlas.org/. Accessed 14 Dec 2016

  • Bar-Natan, D., Morrison, S., et al.: The Mathematica package KnotTheory (2016b). http://katlas.org/wiki/setup. Accessed 14 Dec 2016

  • Bar-Natan, D.: Polynomial invariants are polynomial. Math. Res. Lett. 2(3), 239–246 (1995a)

  • Bar-Natan, D.: On the Vassiliev knot invariants. Topology 34(2), 423–472 (1995b)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, A.D., Maxwell, A.: DNA topology. Oxford University Press, Oxford (2005)

  • Berger, M.A.: Introduction to magnetic helicity. Plasma Phys. Control. Fusion 41(12B), B167 (1999)

    Article  Google Scholar 

  • Bender, E.A., Gao, Z.C., Richmond, L.B.: Submaps of maps. I. General 0–1 laws. J. Comb. Theory Ser. B 55(1), 104–117 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Berry, M.: Knotted zeros in the quantum states of hydrogen. Found. Phys. 31(4), 659–667 (2001)

    Article  MathSciNet  Google Scholar 

  • Birman, J.S., Lin, X.S.: Knot polynomials and Vassiliev’s invariants. Invent. Math. 111(1), 225–270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Bogle, M.G.V., Hearst, J.E., Jones, V.F.R., Stoilov, L.: Lissajous knots. J. Knot Theory Ramif. 3(02), 121–140 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Boocher, A., Daigle, J., Hoste, J., Zheng, W.: Sampling Lissajous and Fourier knots. Exp. Math. 18(4), 481–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Brinkmann, G., McKay, B.D., et al.: Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem 58(2), 323–357 (2007)

    MathSciNet  MATH  Google Scholar 

  • Brooks, R., Makover, E., et al.: Random construction of Riemann surfaces. J. Diff. Geom. 68(1), 121–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Brunn, H.: Über verknotete kurven. Mathematiker Kongresses Zurich, pp. 256–259 (1897)

  • Buck, D.: DNA topology. Applications of knot theory (Proc. Sympos. Appl. Math., 66, Amer. Math. Soc., 2009), pp. 47–79 (2009)

  • Buck, G.R.: Random knots and energy: elementary considerations. J. Knot Theory Ramif. 3(03), 355–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantarella, J., Shonkwiler, C.: The symplectic geometry of closed equilateral random walks in 3-space. Ann. Appl. Prob. 26(1), 549–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantarella, J., Chapman, H., Mastin, M.: Knot probabilities in random diagrams. J. Phys. A Math. Theor. 49(40), 405001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantarella, J., Duplantier, B., Shonkwiler, C., Uehara, E.: A fast direct sampling algorithm for equilateral closed polygons. J. Phys. A Math. Theor. 49(27), 275202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cha, J.C., Livingston, C.: KnotInfo: Table of knot invariants (2016). http://www.indiana.edu/~knotinfo. Accessed 14 Dec 2016

  • Chang, H.-C., Erickson, J.: Electrical reduction, homotopy moves, and defect (2015). arXiv: 1510.00571

  • Chapman, K.: An ergodic algorithm for generating knots with a prescribed injectivity radius (2016a). arXiv:1603.02770

  • Chapman, H.: Asymptotic laws for knot diagrams. In: Proceedings of the 28-th International Conference on Formal Power Series and Algebraic Combinatorics, pp. 323–334 (2016b). Vancouver

  • Chapman, H.: Asymptotic laws for random knot diagrams (2016c). arXiv:1608.02638

  • Cheston, M.A., McGregor, K., Soteros, C.E., Szafron, M.L.: New evidence on the asymptotics of knotted lattice polygons via local strand-passage models. J. Stat. Mech: Theory Exp. 2014(2), P02014 (2014)

    Article  MathSciNet  Google Scholar 

  • Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev knot invariants. Cambridge University Press, Cambridge (2012)

  • Chmutov, S., Duzhin, S.: The Kontsevich integral. Acta Applicandae Mathematica 66(2), 155–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • des Cloizeaux, J, Mehta, M.L.: Topological constraints on polymer rings and critical indices. J. de Physique 40(7), 665–670 (1979)

    Article  Google Scholar 

  • Cohen, G.: Jones (hebrew) (2007). Advisor: Ram Band

  • Cohen, M., Krishnan, S.R.: Random knots using Chebyshev billiard table diagrams. Topol. Appl. 194, 4–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, M., Even-Zohar, C., Krishnan, S.R.: Crossing numbers of random two-bridge knots (2016). arXiv:1606.00277

  • Comstock, E.H.: The real singularities of harmonic curves of three frequencies. Trans. Wisconsin Acad. Sci. 11:452–464 (1897)

  • Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed) Computational problems in abstract algebra, pp. 329–358. Pergamon, Oxford (1970)

  • Coward, A., Lackenby, M.: An upper bound on Reidemeister moves. Am. J. Math. 136(4), 1023–1066 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Crippen, G.M.: Topology of globular proteins. J. Theor. Biol. 45(2), 327–338 (1974)

    Article  Google Scholar 

  • Cromwel, P.R.: Embedding knots and links in an open book I: basic properties. Topol. Appl. 64(1), 37–58 (1995)

    Article  MathSciNet  Google Scholar 

  • Cromwell, P.R.: Arc presentations of knots and links, vol. 42, pp. 57–64. Banach Center Publications, Warsaw (1998)

  • Culler, M., Dunfield, N.M., Weeks, J.R.: SnapPy, a computer program for studying the geometry and topology of 3-manifolds (2016). http://www.math.uic.edu/t3m/SnapPy. Accessed 14 Dec 2016

  • Dasbach, O.T., Le, T.D., Lin, X.S.: Quantum morphing and the Jones polynomial. Commun. Math. Phys. 224(2), 427–442 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Deguchi, T., Tsurusaki, K.: A statistical study of random knotting using the Vassiliev invariants. J. Knot Theory Ramif. 3(03), 321–353 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Deguchi, T., Tsurusaki, K.: Universality of random knotting. Phys. Rev. E 55(5), 6245 (1997)

    Article  MATH  Google Scholar 

  • Delbruck, M.: Knotting problems in biology. Plant Genome Data and Information Center collection on computational molecular biology and genetics (1961)

  • Dennis, M.R., King, R.P., Jack, B., O’Holleran, K., Padgett, M.J.: Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010)

    Article  Google Scholar 

  • Diao, Y., Ernst, C., Ziegler, U.: Generating large random knot projections. In: Calvo, J.A., Millett, K.C., Rawdon, E.J., Stasiak, A. (eds.) Physical And Numerical Models In Knot Theory: Including Applications to the Life Sciences, pp. 473–494. World Scientific, Singapore (2005)

  • Diao, Y.: The knotting of equilateral polygons in \(\mathbb{R}^3\). J. Knot Theory Ramif. 4(02), 189–196 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Diao, Y., Pippenger, N., Sumners, D.W.: On random knots. J. Knot Theory Ramif. 3(03), 419–429 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Diao, Y., Nardo, J.C., Sun, Y.: Global knotting in equilateral random polygons. J. Knot Theory Ramif. 10(04), 597–607 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Diao, Y., Ernst, C., Hinson, K., Ziegler, U.: The mean squared writhe of alternating random knot diagrams. J. Phys. A: Math. Theor. 43(49), 495202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunfield, N., Hirani, A., Obeidin, M., Ehrenberg, A., Bhattacharyya, S., Lei, D., et al.: Random knots: a preliminary report, 2014. Slides for talk (2014). http://dunfield.info/preprints. Accessed 14 Dec 2016

  • Dunfield, N.M., Thurston, W.P.: Finite covers of random 3-manifolds. Inventiones Mathematicae 166(3), 457–521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Dunfield, N.M., Wong, H.: Quantum invariants of random 3-manifolds. Algebr. Geometr. Topol. 11(4), 2191–2205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ernst, C., Sumners, D.W.: The growth of the number of prime knots. Math. Proc. Cambridge Philos. Soc. 102(02), 303–315 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: The distribution of knots in the petaluma model (2017a). preprint arXiv:1706.06571

  • Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: Work in progress (2017b). unpublished

  • Even-Zohar, C.: ABCDEFG: Automated business of chord diagram expectations for grids (2016a). https://github.com/chaim-e/abcdefg. Accessed 14 Dec 2016

  • Even-Zohar, C.: Finite type invariants sampler (2016b). https://github.com/chaim-e/fti-sampler. Accessed 14 Dec 2016

  • Even-Zohar, C.: Hyperbolic volume sampler (2016c). https://github.com/chaim-e/hv-sampler. Accessed 14 Dec 2016

  • Even-Zohar, C.: The writhe of permutations and random framed knots. Random Struct. Algorithm 51(1), 121–142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: Invariants of random knots and links. Discret. Comput. Geometr. 56(2), 274–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Farber, M., Kappeler, T.: Betti numbers of random manifolds. Homol. Homotopy Appl. 10(1), 205–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276–289. ACM (2012)

  • Fenlon, E.E.: Open problems in chemical topology. Eur. J. Org. Chem. 2008(30), 5023–5035 (2008)

    Article  Google Scholar 

  • Flammini, A., Maritan, A., Stasiak, A.: Simulations of action of dna topoisomerases to investigate boundaries and shapes of spaces of knots. Biophys. J. 87(5), 2968–2975 (2004)

    Article  Google Scholar 

  • Flapan, E., Kozai, K.: Linking number and writhe in random linear embeddings of graphs. J. Math. Chem. 54(5), 1117–1133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Frank-Kamenetskii, M.D., Lukashin, A.V., Vologodskii, A.V.: Statistical mechanics and topology of polymer chains. Nature 258(5534), 398 (1975)

    Article  Google Scholar 

  • Frisch, H.L., Wasserman, E.: Chemical topology. J. Am. Chem. Soc. 83(18), 3789–3795 (1961)

    Article  Google Scholar 

  • Goriely, A.: Knotted umbilical cords. Ser. Knots Everything 36, 109–126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Gromov, M.: Random walk in random groups. Geometr. Funct. Anal. 13(1), 73–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Grosberg, A.Y.: Critical exponents for random knots. Phys. Rev. Lett. 85(18), 3858 (2000)

    Article  Google Scholar 

  • Grosberg, A., Nechaev, S.: Algebraic invariants of knots and disordered potts model. J. Phys. A: Math. Gen. 25(17), 4659 (1992)

    Article  MATH  Google Scholar 

  • Grosberg, A.Y., Khokhlov, A.R., Jelinski, L.W.: Giant molecules: here, there, and everywhere. Am. J. Phys. 65(12), 1218–1219 (1997)

    Article  Google Scholar 

  • Guitter, E., Orlandini, E.: Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers. J. Phys. A: Math. Gen. 32(8), 1359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Haken, W.: Theorie der normalflächen. Acta Mathematica 105(3), 245–375 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, D.S., Ray, M.W., Tiurev, K., Ruokokoski, E., Gheorghe, A.H., Möttönen, M.: Tying quantum knots. Nat. Phys. 12(5), 478–483 (2016)

    Article  Google Scholar 

  • Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems. JACM 46(2):185–211 (1999)

  • Hass, J., Nowik, T.: Unknot diagrams requiring a quadratic number of Reidemeister moves to untangle. Discret. Comput. Geometr. 44(1), 91–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi, C., Hayashi, M., Sawada, M., Yamada, S.: Minimal unknotting sequences of Reidemeister moves containing unmatched RII moves. J. Knot Theory Ramif. 21(10), 1250099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hershkovitz, R., Silberstein, T., Sheiner, E., Shoham-Vardi, I., Holcberg, G., Katz, M., Mazor, M.: Risk factors associated with true knots of the umbilical cord. Eur. J. Obstetr. Gynecol. Reprod. Biol. 98(1), 36–39 (2001)

    Article  Google Scholar 

  • Hoste, J., Thistlethwaite, M.: KnotScape, a knot polynomial calculation program (2016). https://www.math.utk.edu/~morwen/knotscape.html. Accessed 14 Dec 2016

  • Hoste, J., Zirbel, L.: Lissajous knots and knots with Lissajous projections (2006). arXiv: math/0605632

  • Hoste, J., Thistlethwaite, M., Weeks, J.: The first 1,701,936 knots. Math. Intell. 20(4), 33–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Hua, X., Nguyen, D., Raghavan, B., Arsuaga, J., Vazquez, M.: Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases. Topol. Appl. 154(7), 1381–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Ichihara, K., Ma, J.: A random link via bridge position is hyperbolic (2016). arXiv: 1605.07267

  • Ichihara, K., Yoshida, K.: On the most expected number of components for random links (2015). arXiv:1507.03110

  • Ito, T.: On a structure of random open books and closed braids. Proc. Jpn. Acad. Ser. A Math. Sci. 91(10), 160–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc 108(1), 35–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Janse Van Rensburg, E.J., Rechnitzer, A.: On the universality of knot probability ratios. J. Phys. A Math. Theor. 44(16), 162002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Janse Van Rensburg, E.J., Orlandini, E., Tesi, M.C., Whittington, S.G.: Knotting in stretched polygons. J. Phys. A Math. Theor. 41(1), 015003 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, V.F.R., Przytycki, J.H.: Lissajous knots and billiard knots, vol. 42, pp. 145–163. Banach Center Publications, Warsaw (1998)

  • Jones, V.F.R.: Ten problems. Math. Perspect. Front. 79–91 (2000)

  • Jones, V.: On knot invariants related to some statistical mechanical models. Pac. J. Math. 137(2), 311–334 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Jungreis, D.: Gaussian random polygons are globally knotted. J. Knot Theory Ramif. 3(04), 455–464 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahle, M.: Random simplicial complexes (2016). arXiv:1607.07069

  • Karadayi, E.: Topics in random knots and R-matrices from Frobenius algebras. PhD thesis, University of South Florida (2010)

  • Kauffman, L.H.: Fourier knots. Ideal knots, World Scientific, p. 19 (1998). arXiv:q-alg/9711013

  • Kauffman, L.H.: Statistical mechanics and the Jones polynomial. Contemp. Math. 78, 175–222 (1988)

  • Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Kauffman, L.H., Lambropoulou, S.: On the classification of rational tangles. Adv. Appl. Math. 33(2), 199–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Kehne, G.: Bipyramid decompositions of multi-crossing link complements, 2016. Advisor: Colin Adams. https://unbound.williams.edu/theses/islandora/object/studenttheses:126

  • Kelvin, L.: On vortex atoms. Proc. R. Soc. Edin 6, 94–105 (1867)

    Google Scholar 

  • Kendall, W.S.: The knotting of Brownian motion in 3-space. J. Lond. Math. Soc. 2(2), 378–384 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler, D.A., Rabin, Y.: Effect of curvature and twist on the conformations of a fluctuating ribbon. J. Chem. Phys. 118(2), 897–904 (2003)

    Article  Google Scholar 

  • Kesten, H.: On the number of self-avoiding walks. J. Math. Phys. 4(7), 960–969 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Kleckner, D., Irvine, W.: Creation and dynamics of knotted vortices. Nat. Phys. 9, 253–258 (2013)

    Article  Google Scholar 

  • Kleckner, D., Kauffman, L.H., Irvine, W.: How superfluid vortex knots untie. Nat. Phys. 12, 650–655 (2016)

    Article  Google Scholar 

  • Koniaris, K., Muthukumar, M.: Knottedness in ring polymers. Phys. Rev. Lett. 66(17), 2211 (1991)

    Article  Google Scholar 

  • Koseleff, P.V., Pecker, D.: Chebyshev knots. J. Knot Theory Ramif. 20(04), 575–593 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kowalski, E.: On the complexity of Dunfield–Thurston random 3-manifolds (2010). http://www.math.ethz.ch/\({\sim }\)kowalski/complexity-dunfield-thurston.pdf

  • Kuperberg, G.: How hard is it to approximate the Jones polynomial? (2009). arXiv:0908.0512

  • Kuperberg, G.: Knottedness is in NP, modulo GRH. Adv. Math. 256, 493–506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Lackenby, M.: The efficient certification of knottedness and Thurston norm (2016). arXiv:1604.00290

  • Lackenby, M.: The volume of hyperbolic alternating link complements. Proc. Lond. Math. Soc. 88(1), 204–224 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lackenby, M.: A polynomial upper bound on Reidemeister moves. Ann. Math. 182(2), 491–564 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Lamm, C.: Fourier knots (2012). arXiv:1210.4543

  • Lamm, C.: There are infinitely many Lissajous knots. Manuscripta Math. 93(1), 29–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Lavi, G., Nowik, T.: Personal communication (2016)

  • Le Bret, M.: Monte Carlo computation of the supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA. Biopolymers 19(3), 619–637 (1980)

    Article  Google Scholar 

  • Lickorish, W.B.R.: An introduction to knot theory, vol. 175. Springer, New York (1997)

  • Lim, N.C.H., Jackson, S.E.: Molecular knots in biology and chemistry. J. Phys. Condens. Matter 27(35), 354101 (2015)

    Article  Google Scholar 

  • Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lissajous, J.A.: Mémoire sur l’étude optique des mouvements vibratoires. France, Paris (1857)

  • Liu, Z., Chan, H.S.: Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. J. Chem. Phys. 128(14), 04B610 (2008)

    Google Scholar 

  • Lubotzky, A., Maher, J., Conan, W.: Random methods in 3-manifold theory. Proc. Steklov Inst. Math. 292(1), 118–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Lutz, F.H.: Combinatorial 3-manifolds with 10 vertices. Beiträge Algebra Geom 49(1), 97–106 (2008)

    MathSciNet  MATH  Google Scholar 

  • Ma, J.: Components of random links. J. Knot Theory Ramif. 22(08), 1350043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, J.: The closure of a random braid is a hyperbolic link. Proc. Am. Math. Soc. 142(2), 695–701 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Madras, N., Slade, G.: The self-avoiding walk. Modern Birkhäuser Classics (2013)

  • Maher, J.: Random Heegaard splittings. J. Topol. 3(4), 997–1025 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Maher, J., et al.: Random walks on the mapping class group. Duke Math. J. 156(3), 429–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Maher, J.: Exponential decay in the mapping class group. J. Lond. Math. Soc. 86(2), 366–386 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Malyutin, A.: On the question of genericity of hyperbolic knots (2016). arXiv:1612.03368

  • Malyutin, A.: Quasimorphisms, random walks, and transient subsets in countable groups. J. Math. Sci. 181(6), 871–885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Marenduzzo, D., Orlandini, E., Stasiak, A., Tubiana, L., Micheletti, C., et al.: DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. 106(52), 22269–22274 (2009)

    Article  Google Scholar 

  • McLeish, T.: A tangled tale of topological fluids. Phys. Today 61(8), 40–45 (2008)

    Article  Google Scholar 

  • Micheletti, C., Marenduzzo, D., Orlandini, E., Sumners, D.W.: Simulations of knotting in confined circular DNA. Biophys. J. 95(8), 3591–3599 (2008)

    Article  Google Scholar 

  • Micheletti, C., Marenduzzo, D., Orlandini, E.: Polymers with spatial or topological constraints: theoretical and computational results. Phys. Rep. 504(1), 1–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Michels, J.P.J., Wiegel, F.W.: Probability of knots in a polymer ring. Phys. Lett. A 90(7), 381–384 (1982)

    Article  Google Scholar 

  • Michels, J.P.J., Wiegel, F.W.: On the topology of a polymer ring. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 403(1825), 269–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Michels, J.P.J., Wiegel, F.W.: The distribution of Alexander polynomials of knots confined to a thin layer. J. Phys. A Math. Gen. 22(13), 2393 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Millett, K.C., Rawdon, E.J.: Universal characteristics of polygonal knot probabilities. In: Calvo, J.A., Millett, K.C., Rawdon, E.J., Stasiak, A. (eds) Physical and Numerical Models in Knot Theory, eds. , Ser. Knots Everything, vol. 36, pp. 247–274 (2005)

  • Millett, K.C.: Monte Carlo explorations of polygonal knot spaces. In: Knots in Hellas ’98—Proceedings of the International Conference on Knot Theory and Its Ramifications, vol. 24, p. 306. World Scientific (2000)

  • Mitzenmacher, M., Upfal, E.: Probability and computing: Randomized algorithms and probabilistic analysis. Cambridge University Press, Cambridge (2005)

  • Nechaev, S.K.: Statistics of knots and entangled random walks. World Scientific, Singapore (1996)

  • Obeidin, M.: Volumes of random alternating link diagrams (2016). arXiv:1611.04944

  • Ohtsuki, T., et al.: Problems on invariants of knots and 3-manifolds. Geometr. Topol. Monogr. 4, 377–572 (2002)

    MathSciNet  MATH  Google Scholar 

  • Ollivier, Y.: A invitation to random groups. Ensaios Matemticos 10, 1–100 (2005)

  • Orlandini, E., Whittington, G.: Statistical topology of closed curves: some applications in polymer physics. Rev. Mod. Phys. 79(2), 611 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Orlandini, E., Janse Van Rensburg, E.J., Tesi, M.C., Whittington, S.G.: Random linking of lattice polygons. J. Phys. A Math. Gen. 27(2), 335 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Orlandini, E., Tesi, M.C., Janse Van Rensburg, E.J., Whittington, S.G.: Asymptotics of knotted lattice polygons. J. Phys. A Math. Gen. 31(28), 5953 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • O’Rourke, J.: Complexity of random knot with vertices on sphere. Retrieved from MathOverflow (2011). http://mathoverflow.net/q/54412

  • Panagiotou, E., Millett, K.C., Lambropoulou, S.: The linking number and the writhe of uniform random walks and polygons in confined spaces. J. Phys. A Math. Theor. 43(4), 045208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Pippenger, N.: Knots in random walks. Discret. Appl. Math. 25(3), 273–278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Pippenger, N., Schleich, K.: Topological characteristics of random triangulated surfaces. Random Struct. Algorithms 28(3), 247–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Polyak, M.: Invariants of curves and fronts via Gauss diagrams. Topology 37(5), 989–1009 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Rappaport, S.M., Rabin, Y.: Differential geometry of polymer models: worm-like chains, ribbons and Fourier knots. J. Phys. A Math. Theor. 40(17), 4455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Rappaport, S.M., Rabin, Y., Grosberg., A.Y.: Worm-like polymer loops and Fourier knots. J. Phys. A Math. Gen. 39(30), L507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Raymer, D.M., Smith, D.E.: Spontaneous knotting of an agitated string. Proc. Nat. Acad. Sci. 104(42), 16432–16437 (2007)

    Article  Google Scholar 

  • Richmond, B.L., Wormald, N.C.: Almost all maps are asymmetric. J. Comb. Theory Ser. B 63(1), 1–7 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Rivin, I.: Random space and plane curves (2016). arXiv:1607.05239

  • Rivin, I.: Statistics of random 3-manifolds occasionally fibering over the circle (2014). arXiv:1401.5736

  • Rolfsen, D.: Knots and links, vol. 346. American Mathematical Soc. (1976)

  • Schaeffer, G., Zinn-Justin, P.: On the asymptotic number of plane curves and alternating knots. Exp. Math. 13(4), 483–493 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Nechaev, S.K., Grosberg, A.Y., Vershik, A.M.: Random walks on braid groups: Brownian bridges, complexity and statistics. J. Phys. A Math. Gen. 29(10), 2411 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Soret, M., Ville, M.: Lissajous and Fourier knots. J. Knot Theory Ramif. 25(05), 1650026 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Soteros, C.E., Sumners, D.W., Whittington, S.G.: Entanglement complexity of graphs in \(\mathbb{Z}^3\). Math. Proc. Cambridge Philos. Soc. 111(01), 75–91 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Soteros, C.E., Sumners, D.W., Whittington, S.G.: Linking of random p-spheres in \(\mathbb{Z}^d\). J. Knot Theory Ramif. 8(01), 49–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Soteros, C.E., Sumners, D.W., Whittington, S.G.: Knotted 2-spheres in tubes in \(\mathbb{Z}^4\). J. Knot Theory Ramif. 21(11), 1250116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Sumners, D.W.: Knot theory and DNA. Proc. Symp. Appl. Math. 45, 39–72 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Sumners, D.W.: Lifting the curtain: using topology to probe the hidden action of enzymes. Not. Am. Math. Soc. 42(5), 528–537 (1995)

    MathSciNet  MATH  Google Scholar 

  • Sumners, D.W., Whittington, S.G.: Knots in self-avoiding walks. J. Phys. A Math. Gen. 21(7), 1689 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Sumners, D.W., Berger, M.A., Kauffman, L.H., Khesin, B., Moffatt, H.K., Ricca, R.L.: Lectures on topological fluid mechanics. Springer, New York (2009)

    Google Scholar 

  • Sundberg, C., Thistlethwaite, M.: The rate of growth of the number of prime alternating links and tangles. Pac. J. Math. 182(2), 329–358 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Szafron, M.L., Soteros, C.E.: Knotting probabilities after a local strand passage in unknotted self-avoiding polygons. J. Phys. A Math. Theor. 44(24), 245003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Tait, P.G.: The first seven orders of knottiness. Tran. Roy. Soc. Edinburgh 32, 327–342 (1884)

    Article  Google Scholar 

  • Taylor, A.J., Dennis, M.R.: Vortex knots in tangled quantum eigenfunctions. Nat. Commun. 7, 12346 (2016). https://doi.org/10.1038/ncomms12346

  • Thistlethwaite, M.: On the structure and scarcity of alternating links and tangles. J. Knot Theory Ramif. 7(07), 981–1004 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Thurston, B.: Complexity of random knot with vertices on sphere. MathOverflow (2011). http://mathoverflow.net/q/54417

  • Thurston, W.: The geometry and topology of 3-manifolds. http://library.msri.org/books/gt3m/. Lecture notes (1978)

  • Trautwein, A.K.: Harmonic knots. Ph.D. Thesis, University of Iowa (1995)

  • Janse van Rensburg, E.J., Whittington, S.G.: The knot probability in lattice polygons. J. Phys. A Math. Gen. 23(15), 3573 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Vasilyev, O.A., Nechaev, S.K.: Thermodynamics and topology of disordered systems: statistics of the random knot diagrams on finite lattices. J. Exp. Theor. Phys. 93(5), 1119–1136 (2001)

    Article  Google Scholar 

  • Vassiliev, V.A.: Cohomology of knot spaces. Theory Singul. Appl. (Providence) 1, 23–69 (1990)

    MathSciNet  Google Scholar 

  • Vologodskii, A.: Topology and Physics of Circular DNA. CRC, Boca Raton, FL (1992)

  • von Helmholtz, H.: Lxiii. on integrals of the hydrodynamical equations, which express vortex-motion. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 33(226), 485–512 (1867)

    Google Scholar 

  • Wasserman, W.A., Cozzarelli, N.R.: Biochemical topology: applications to DNA recombination and replication. Science 232(4753), 951–960 (1986)

    Article  Google Scholar 

  • Wasserman, S.A., Dungan, J.M., Cozzarelli, N.R.: Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229(4709), 171–174 (1985)

    Article  Google Scholar 

  • Welsh, D.J.A.: On the number of knots and links. Colloq. Math. Soc. Janos Bolyai 59, 1–6 (1991)

    Google Scholar 

  • Westenberger, C.: Knots and links from random projections (2016). arXiv:1602.01484

  • Willerton, S.: On the first two Vassiliev invariants. Exp. Math. 11(2), 289–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Winfree, A.T., Strogatz, S.H.: Organizing centres for three-dimensional chemical waves. Nature 311(5987), 611–615 (1984)

    Article  Google Scholar 

  • Wise D.: Personal Communication (2016)

  • Witte, S., Brasher, R., Vazquez, M.: Randomly sampling grid diagrams of knots. Retrieved (2016). http://www.math.ucdavis.edu/~slwitte/research/BlackwellTapiaPoster.pdf

  • Wu, F.Y.: Knot theory and statistical mechanics. Rev. Mod. Phys. 64(4), 1099 (1992)

    Article  MathSciNet  Google Scholar 

  • Zintzen, V., Roberts, C.D., Anderson, M.J., Stewart, A.L., Struthers, C.D., Harvey, E.S.: Hagfish predatory behaviour and slime defence mechanism. Sci. Rep. 1, 131 (2011). https://doi.org/10.1038/srep00131

Download references

Acknowledgements

I wish to thank Joel Hass, Nati Linial, and Tahl Nowik for many hours of insightful discussions on knots, random knots and many other knotty subjects during our joint work. Their knowledge, vision and ideas are hopefully reflected in this article. All false conjectures are mine. I also wish to thank Robert Adler, Eric Babson, Rami Band, Itai Benjamini, Harrison Chapman, Moshe Cohen, Nathan Dunfield, Dima Jakobson, Sunder Ram Krishnan, Gal Lavi, Neal Madras, Igor Rivin, Dani Wise, and many others for valuable discussions on randomized knot models. Finally, I thank Moshe Cohen and the reviewers for their helpful suggestions. This article is based on the introduction to the author’s doctoral thesis at the Hebrew University of Jerusalem under the supervision of Nati Linial. It was supported by BSF Grant 2012188. This final version was completed while the author was a postdoctoral fellow at the Institute for Computational and Experimental Research in Mathematics (ICERM) during the Fall of 2016. The author was supported in part by the Rothschild fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim Even-Zohar.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Even-Zohar, C. Models of random knots. J Appl. and Comput. Topology 1, 263–296 (2017). https://doi.org/10.1007/s41468-017-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-017-0007-8

Keywords

Mathematics Subject Classification

Navigation