Skip to main content
Log in

Invariants of Random Knots and Links

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study random knots and links in \(\mathbb {R}^3\) using the Petaluma model, which is based on the petal projections developed in [2]. In this model we obtain a formula for the limiting distribution of the linking number of a random two-component link. We also obtain formulas for the expectations and the higher moments of the Casson invariant and the order-3 knot invariant \(v_3\). These are the first precise formulas given for the distributions and higher moments of invariants in any model for random knots or links. We also use numerical computation to compare these to other random knot and link models, such as those based on grid diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, C., Capovilla-Searle, O., Freeman, J., Irvine, D., Petti, S., Vitek, D., Weber, A., Zhang, S.: Bounds on übercrossing and petal numbers for knots. (2013) http://arxiv.org/abs/1311.0526

  2. Adams, C., Crawford, T., DeMeo, B., Landry, M., Lin, A.T., Montee, M., Park, S., Venkatesh, S., Yhee, F.: Knot projections with a single multi-crossing. (2012) http://arxiv.org/abs/1208.5742

  3. Adams, C.C.: The Knot Book. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  4. Alvarez, M., Labastida, J.: Vassiliev invariants for torus knots. J. Knot Theory Ramif. 5(06), 779–803 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arsuaga, J., Blackstone, T., Diao, Y., Karadayi, E., Saito, M.: Linking of uniform random polygons in confined spaces. J. Phys. A 40(9), 1925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, R., Mehta, M.: Sequence of invariants for knots and links. J. Phys. 42(9), 1193–1199 (1981)

    Article  MathSciNet  Google Scholar 

  7. Bellissard, J., Camacho, C.J., Barelli, A., Claro, F.: Exact random walk distributions using noncommutative geometry. J. Phys. A 30(21), L707 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breiman, L.: Probability. Classics in Applied Mathematics, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Book  MATH  Google Scholar 

  9. Brunn, H.: Über verknotete Kurven, pp. 256–259. Verhandlungen des ersten Internationalen Mathematiker-Kongresses in Zürich (1897). http://www.mathunion.org/ICM/ICM1897/Main/icm1897.0256.0259.ocr.pdf

  10. Buck, G.R.: Random knots and energy: Elementary considerations. J. Knot Theory Ramif. 3(03), 355–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev Knot Invariants. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  12. Cromwell, P.R.: Arc presentations of knots and links. Banach Cent. Publ. 42, 57–64 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Dunfield, N.M., Thurston, W.P.: Finite covers of random 3-manifolds. Invent. Math. 166(3), 457–521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duplantier, B.: Areas of planar Brownian curves. J. Phys. A 22(15), 3033 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Even-Zohar, C., Hass, J., Linial, N., Nowik, T.: Invariants of random knots and links. Ancillary files (2014). http://arxiv.org/abs/1411.3308

  16. Goussarov, M., Polyak, M., Viro, O.: Finite-type invariants of classical and virtual knots. Topology 39(5), 1045–1068 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gradshteyn, I., Jeffrey, A., Ryzhik, I., Zwillinger, D.: Table of Integrals, Series, and Products. Academic Press, New York (2007)

    Google Scholar 

  18. Harper, P.: The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proc. Phys. Soc. Sect. A 68(10), 879 (1955)

    Article  MATH  Google Scholar 

  19. Hoste, J., Thistlethwaite, M., Weeks, J.: The first 1,701,936 knots. Math. Intell. 20(4), 33–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kauffman, L.H.: The Conway polynomial. Topology 20(1), 101–108 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kauffman, L.H.: On Knots, vol. 115. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  22. Khandekar, D., Wiegel, F.: Distribution of the area enclosed by a plane random walk. J. Phys. A 21(10), L563 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kowalski, E.: On the complexity of Dunfield–Thurston random 3-manifolds. (2010) www.math.ethz.ch/~kowalski/complexity-dunfield-thurston.pdf

  24. Lévy, P.: Wiener’s random function, and other laplacian random functions. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 171–187. University of California Press, Berkeley (1951)

  25. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubotzky, A., Maher, J., Wu, C.: Random methods in 3-manifold theory. (2014) http://arxiv.org/abs/1405.6410

  27. Lutz, F.H.: Combinatorial 3-manifolds with 10 vertices. Beiträge Algebra Geom. 49(1), 97–106 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Maher, J.: Random Heegaard splittings. J. Topol. 3(4), 997–1025 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mashkevich, S., Ouvry, S.: Area distribution of two-dimensional random walks on a square lattice. J. Stat. Phys. 137(1), 71–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Micheletti, C., Marenduzzo, D., Orlandini, E.: Polymers with spatial or topological constraints: theoretical and computational results. Phys. Rep. 504(1), 1–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperimetric Inequalities in Riemannian Manifolds, vol. 1200. Springer, Berlin (1986)

    MATH  Google Scholar 

  32. Mingo, J.A., Nica, A.: On the distribution of the area enclosed by a random walk on \(\mathbb{Z}^2\). J. Comb. Theory Ser. A 84(1), 55–86 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohammad-Noori, M.: Enumeration of closed random walks in the square lattice according to their areas. (2010) http://arxiv.org/abs/1012.3720

  34. Pippenger, N.: Knots in random walks. Discrete Appl. Math. 25(3), 273–278 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polyak, M., Viro, O.: Gauss diagram formulas for Vassiliev invariants. Int. Math. Res. Not. 1994(11), 445–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sumners, D., Whittington, S.: Knots in self-avoiding walks. J. Phys. A 21(7), 1689 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vassiliev, V.A.: Cohomology of knot spaces. Theory Singul. Its Appl. 1, 23–69 (1990)

    MathSciNet  Google Scholar 

  38. Willerton, S.: On the Vassiliev invariants for knots and for pure braids. Ph.D. thesis, University of Edinburgh (1997)

Download references

Acknowledgments

This project was supported by BSF Grant 2012188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaim Even-Zohar.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Even-Zohar, C., Hass, J., Linial, N. et al. Invariants of Random Knots and Links. Discrete Comput Geom 56, 274–314 (2016). https://doi.org/10.1007/s00454-016-9798-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9798-y

Keywords

Mathematics Subject Classification

Navigation