Skip to main content
Log in

Investigation of sensitivity and threshold voltage shift of commercial MOSFETs in gamma irradiation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This article is about the absorbed-dose-dependent threshold voltage shift of the MOSFET transistors. Performance of the MOSFETs has been tested in different gate voltages. Sensitivity of the transistors for 662 keV gamma ray is studied in 1–5 Gy dose range. It was found that for transistors irradiated in biased mode, significant changes in the threshold voltage occurred, and the sensitivity to gamma rays increased with the bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 1989)

    Google Scholar 

  2. M.J. Butson, J.N. Mathur, P.E. Metcalfe, Radio chromic film as a radiotherapy surface-dose detector. Phys. Med. Biol. 41, 1073–1078 (1996). doi:10.1088/0031-9155/41/6/011

    Article  Google Scholar 

  3. G.I. Kaplan, A.B. Rosenfeld, B.J. Allen et al., Improved spatial resolution by MOSFET dosimetry of an X-ray micro beam. Med. Phys. 27, 239–244 (2000). doi:10.1118/1.598866

    Article  Google Scholar 

  4. D.J. Gladstone, X.Q. Lu, J.L. Humm et al., A miniature MOSFET radiation dosimeter probe. Med. Phys. 21, 1721–1728 (1994). doi:10.1118/1.597214

    Article  Google Scholar 

  5. G. Polge, L. Dusseau, K. Idri et al., Characterization of a 63 MeV proton beam with optically stimulated luminescent films, in Proceedings of RADECS Conference Paper A-1. (2001). doi:10.1109/RADECS.2001.1159249

  6. D. Plattard, G. Ranchoux, L. Dusseau et al., Characterization of an integrated sensor using optically stimulated luminescence for in flight dosimetry, in Proceedings of RADECS Conference Paper A-2. (2001). doi:10.1109/RADECS.2001.1159250

  7. J. Barthe, Electronic dosimetry based on solid state detectors. Nucl. Instrum. Methods. B. 184, 158–189 (2001). doi:10.1016/S0168-583X(01)00711-X

    Article  Google Scholar 

  8. P. Scalchi, P. Francescon, Calibration of a MOSFET detection system for 6-MV in vivo dosimetry. Int. J. Radiat. Oncol. Biol. Phys. 40, 987–993 (1998). doi:10.1016/S0360-3016(97)00894-8

    Article  Google Scholar 

  9. A.B. Rosenfeld, MOSFET dosimetry on modern radiation oncology modalities. Radiat. Prot. Dosim. 101, 393–398 (2002). doi:10.1093/oxfordjournals.rpd.a006009

    Article  Google Scholar 

  10. I.S. Kwan, A.B. Rosenfeld, Z.Y. Qi et al., Skin dosimetry with new MOSFET detectors. Radiat. Meas. 43, 929–932 (2008). doi:10.1016/j.radmeas.2007.12.052

    Article  Google Scholar 

  11. R.A. Price, C. Benson, M.J. Joyce et al., Development of a RADFET linear array for intracavitary in vivo dosimetry during external beam radiotherapy and brachytherapy. IEEE Trans. Nucl. Sci. 51, 1420–1426 (2004). doi:10.1109/TNS.2004.832570

    Article  Google Scholar 

  12. T.M. Briere, A.S. Beddar, M.T. Gillin, Evaluation of pre calibration implantable MOSFET radiation dosimeters for megavoltage photons beams. Med. Phys. 32, 3346–3349 (2005). doi:10.1118/1.2065447

    Article  Google Scholar 

  13. J.E. Cygler, A. Saoudi, G. Perry et al., Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose-rate prostate implants. Radiother. Oncol. 80, 296–301 (2006). doi:10.1016/j.radonc.2006.07.008

    Article  Google Scholar 

  14. C.W. Scarantino, D.M. Ruslander, C.J. Rini et al., An implantable radiation dosimeter for use in external beam radiation therapy. Med. Phys. 31, 2658–2671 (2004). doi:10.1118/1.1778809

    Article  Google Scholar 

  15. M. Soubra, J. Cygler, G. Mackay, Evaluation of a dual bias dual metal-oxide-silicon semiconductor field-effect transistor detector as radiation dosimeter. Med. Phys. 21, 567–572 (1994). doi:10.1118/1.597314

    Article  Google Scholar 

  16. G. Sarrabayrouse, V. Polischuk, MOS ionizing radiation dosimeters: from low to high dose measurement. Radiat. Phys. Chem. 61, 511–513 (2001). doi:10.1016/S0969-806X(01)00317-6

    Article  Google Scholar 

  17. L.J. Asensio, M.A. Carvajal, J.A. Lopes-Villanueva et al., Evaluation of a low-cost commercial MOSFET as radiation dosimeter. Sens. Actuators, A 125, 288–295 (2006). doi:10.1016/j.sna.2005.08.020

    Article  Google Scholar 

  18. M. Milic, Pejovic, application of p-channel power VMOSFET as a high radiation doses sensor. IEEE Trans. Nucl. Sci. 62, 1905–1910 (2015). doi:10.1109/TNS.2015.2456211

    Article  Google Scholar 

  19. G. Ristic, S. Golubovic, M. Pejovic, PMOS transistors for dosimetric application. Electron. Lett. 29, 1644–1646 (1993). doi:10.1049/el:19931095

    Article  Google Scholar 

  20. M.M. Pejovic, M.M. Pejovic, A.B. Jaksic, Contribution of fixed oxide traps to sensitivity of pMOS dosimeters during gamma ray irradiation and annealing at room and elevated temperature. Sens. Actuators, A 174, 85–90 (2012). doi:10.1016/j.sna.2011.12.011

    Article  Google Scholar 

  21. A. Kelleher, M. O’Sullivan, J. Ryan et al., Development of the radiation sensitivity of PMOS dosimeters. IEEE Trans. Nucl. Sci. NS. 39, 342–346 (1992). doi:10.1109/23.277514

    Article  Google Scholar 

  22. T.P. Ma, P.V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits (Wiley, New York, 1989)

    Google Scholar 

  23. M.A. Carvajal, M. Vilches, D. Guirado et al., Readout techniques for linearity and resolution improvements in MOSFET dosimeters. Sens. Actuators A Phys. 157, 178–184 (2010). doi:10.1016/j.sna.2009.11.034

    Article  Google Scholar 

  24. P.M. Lenahan, P.V. Dressendorfer, Hole traps and trivalent silicon centers in metal/oxide/silicon devices. J. Appl. Phys. 55, 3495–3499 (1984). doi:10.1063/1.332937

    Article  Google Scholar 

  25. C. Conneely, B. O’Connell, P. Hurley et al., Strategies for millirad sensitivity in PMOS dosimeters. IEEE Trans. Nucl. Sci. 45, 1475–1480 (1997). doi:10.1109/RADECS.1997.698911

    Article  Google Scholar 

  26. G. Ristic, S. Golubovic, M. Pejovic, Sensitivity and fading of pMOS dosimeters with thick gate oxide. Sens. Actuators, A 51, 153–158 (1996). doi:10.1016/0924-4247(95)01211-7

    Article  Google Scholar 

  27. G. Sarrabayrouse, A. Bellaouar, P. Rossel, Electrical properties of MOS radiation dosimeters. Rev. Phys. Appl. 21, 283–287 (1986). doi:10.1051/rphysap:01986002104028300

    Article  Google Scholar 

  28. D. Georg, B.D. Ost, M.T. Hoornaert et al., Build-up modification of commercial diodes for entrance dose measurements in ‘higher energy’ photon beams. Radiother. Oncol. 51, 249–256 (1999). doi:10.1016/S0167-8140(99)00058-4

    Article  Google Scholar 

  29. A.J. Lelis, H.E. Boesch, T.R. Oldham et al., Reversibility of trapped hole annealing. IEEE Trans. Nucl. Sci. 35, 1186–1191 (1988). doi:10.1109/23.25437

    Article  Google Scholar 

  30. I. Thomson, European Patent Office, EP 0471957A2, Direct Reading Dosimeter, (1991)

  31. P.H. Halvorsen, Dosimetric evaluation of a new design MOSFET in vivo dosimeter. Med. Phys. 32, 110–117 (2005). doi:10.1118/1.1827771

    Article  Google Scholar 

  32. Chiang Te-Kuang, A Novel quasi-3-D interface trapped charge induced threshold voltage model for quadruple-gate MOSFETs, including equivalent number of gates (ENG). IEEE Trans. Electron Devices 61, 1615–1618 (2014). doi:10.1109/TED.2014.2312922

    Article  Google Scholar 

  33. A. Jaksic, G. Ristic, M. Pejovic et al., Gamma-ray irradiation and post-irradiation responses of high dose range RADFETs. IEEE Trans. Nucl. Sci. 49, 1356–1363 (2002). doi:10.1109/TNS.2002.1039667

    Article  Google Scholar 

  34. M.M. Pejovic, M.M. Pejovic, A.B. Jaksic, Radiation sensitive field effect transistor response to gamma-ray irradiation. Nucl. Technol. Radiat. Prot. 26, 25–31 (2011). doi:10.2298/NTRP1101025P

    Article  Google Scholar 

  35. A. Haran, A. Jaksic, N. Refaeli et al., Temperature effects and long term fading of implanted and unimplanted gate oxide RADFETs. IEEE Trans. Nucl. Sci. 51, 2917–2921 (2004). doi:10.1109/TNS.2004.835065

    Article  Google Scholar 

  36. M.M. Pejovic, S.M. Pejovic, E.C. Dolicanin et al., Gamma-ray irradiation and post-irradiation at room and elevated temperature response of pMOS dosimeters with thick gate oxides. Nucl. Technol. Radiat. Prot. 26, 261–265 (2011). doi:10.2298/NTRP1103261P

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Ashrafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafi, S., Eslami, B. Investigation of sensitivity and threshold voltage shift of commercial MOSFETs in gamma irradiation. NUCL SCI TECH 27, 144 (2016). https://doi.org/10.1007/s41365-016-0149-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0149-8

Keywords

Navigation