Skip to main content

Advertisement

Log in

The design and processing of SONG library

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Multi-group cross section library is the basic condition for lattice calculation, which provides the necessary nuclear data parameters. The multi-functional lattice code SONG (Si et al. in Nucl Power Eng 35:111–115, 2014. doi:10.13832/j.jnpe.2014.S2.0112; Chen et al. in Nucl Power Eng 35:127–130, 2014. doi:10.13832/j.jnpe.2014.S2.0127) is developed to adapt to the research demands of different types of new reactors, especially the fourth generation (GEN-IV) reactors (Cerullo and Lomonaco in Nucl Fuel Cycle Sci Eng, 2012. doi:10.1533/9780857096388.3.333; Giorgio et al. in Energy Policy 61:1503–1520, 2013. doi:10.1016/j.enpol.2013.06.101). The corresponding multi-group cross section library of SONG (SONGLIB) is well designed with much effort considering the next generation reactors’ new feature in material, spectrum, burnup depth, etc. Therefore, the burnup chain (Maria and Jaakko in Nucl Sci Eng 164:140–150, 2010. doi:10.13182/NSE09-14), energy group structure (Tholakele et al. in Ann Nucl Energy 80:279–292, 2015. doi:10.1016/j.anucene.2015.01.038), and reaction path should be specially considered. The library SONGLIB is processed with the Evaluated Nuclear Data File (ENDF), nuclide data auxiliary processing code NJOYBAT (Si et al. 2014), and library management code MANLIB (Si et al. 2014). A series of verification work of SONGLIB is then carried out, and the calculated results are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.A. Yousry, Multiprocessing for neutron diffusion and deterministic transport methods. Prog. Nucl. Energy 31, 317–368 (1997). doi:10.1016/S0149-1970(96)00015-7

    Article  Google Scholar 

  2. C. Chen, J. Zou, J. Zheng et al., Development and testing of the code for automatic generating of multi-temperature continuous-energy neutron cross section libraries. Nucl. Sci. Tech. 25, 050602 (2014). doi:10.13538/j.1001-8042/nst.25.050602

    Google Scholar 

  3. A.D. Stephen, K.F. Stanley, Monte Carlo modeling of neutron transport. in A Monte Carlo Primer ed. by A.D. Stephen (Springer, New York, 2002), pp. 57–88. doi: 10.1007/978-1-4419-8491-3_3

  4. S.Y. Si, Q.C. Chen, J.K. Zhao et al., SONG-description of multi-functional lattice code. Nucl. Power Eng. 35, 111–115 (2014). doi:10.13832/j.jnpe.2014.S2.0112. (in Chinese)

    Google Scholar 

  5. Q.C. Chen, S.Y. Si, J.K. Zhao et al., SONG-development of transport modules. Nucl. Power Eng. 35, 127–130 (2014). doi:10.13832/j.jnpe.2014.S2.0127. (in Chinese)

    Google Scholar 

  6. N. Cerullo, G. Lomonaco, 13-Generation IV reactor designs, operation and fuel cycle. Nucl. Fuel Cycle Sci. Eng. (2012). doi:10.1533/9780857096388.3.333

    Google Scholar 

  7. L. Giorgio, M. Mauro, T. Nicola, Generation IV nuclear reactors: current status and future prospects. Energy Policy 61, 1503–1520 (2013). doi:10.1016/j.enpol.2013.06.101

    Article  Google Scholar 

  8. L. Michel, G. Otto, Perspectives of the thorium fuel cycle. Nucl. Eng. Des. 180, 133–146 (1998). doi:10.1016/S0029-5493(97)00296-3

    Article  Google Scholar 

  9. H.Q. Zhang, J. Lin, C.Q. Cao et al., Simulation study on 232Th-233U conversion in thermal reactors. Nucl. Tech. 38, 050601 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.050601. (in Chinese)

    Google Scholar 

  10. G.A. Ye, T.H. Yan, 20-development of closed nuclear fuel cycles in China. Reprocess. Recycl. Spent Nucl. Fuel (2015). doi:10.1016/B978-1-78242-212-9.00020-4

    Google Scholar 

  11. P. Maria, L. Jaakko, Computing the matrix exponential in burnup calculations. Nucl. Sci. Eng. 164, 140–150 (2010). doi:10.13182/NSE09-14

    Article  Google Scholar 

  12. P.N. Tholakele, N.I. Kostadin, L. Samuel, Examination and refinement of fine energy group structure for high temperature reactor analysis. Ann. Nucl. Energy 80, 279–292 (2015). doi:10.1016/j.anucene.2015.01.038

    Article  Google Scholar 

  13. C.L. Wang, Y. Xiao, J.J. Zhou et al., CFD analysis of a fluoride salt cooled pebble-bed test reactor. Nucl. Sci. Eng. 178, 86–102 (2014). doi:10.13182/NSE13-60

    Article  Google Scholar 

  14. D.L. Zhang, A. Rineiski, C.L. Wang et al., Development of a kinetic model for safety studies of liquid-fuel reactors. Prog. Nucl. Energy 81, 104–112 (2015). doi:10.1016/j.pnucene.2015.01.011

    Article  Google Scholar 

  15. C.L. Wang, Z.P. Guo, D.L. Zhang et al., Transient behavior of the sodium-potassium alloy heat pipe in passive residual heat removal system of molten salt reactor. Prog. Nucl. Energy 68, 142–152 (2013). doi:10.1016/j.pnucene.2013.07.001

    Article  Google Scholar 

  16. M.L. Xie, Y.Q. Chen, L. Yu et al., Optimization analysis of the production process based on WIMS format multi-group nuclear data. Nucl. Tech. 38, 110502 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.110502. (in Chinese)

    Google Scholar 

  17. J.J. Hou, S.Q. Wang, Y. Cai et al., Conceptual core design of small traveling wave reactors based on coupled code of MCNP-ORIGEN. Nucl. Tech. 38, 080603 (2015). doi:10.11889/j.0253-3219.2015.hjs.38.080603. (in Chinese)

    Google Scholar 

  18. K.S. Kim, G.H. Ser, A new procedure to generate resonance integral table with an explicit resonance interference for transport lattice codes. Ann. Nucl. Energy 38, 118–127 (2011). doi:10.1016/j.anucene.2010.08.005

    Article  Google Scholar 

  19. H. Roushdy, Derivation of modified approximate analytical formulae for calculating the direct and adjoint flux weighted resonance integrals using a variable neutron spectrum. Ann. Nucl. Energy 27, 133–141 (2000). doi:10.1016/S0306-4549(99)00041-9

    Article  Google Scholar 

  20. X.M. Zhou, X.H. Wang, Study on multigroup nuclear cross section library for TMSR-SF at high temperature. Nucl. Tech. 37, 120602 (2014). doi:10.11889/j.0253-3219.2014.hjs.37.120602

    Google Scholar 

  21. M.S. Cheng, Z.M. Dai, Development of a three dimension multi-physics code for molten salt fast reactor. Nucl. Sci. Tech. 25, 010601 (2014). doi:10.13538/j.1001-8042/nst.25.010601

    Google Scholar 

  22. M.B. Chadwick, P. Obložinský, M. Herman, ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 107, 2931–3060 (2006). doi:10.1016/j.nds.2006.11.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Bei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bei, H., Zhao, JK., Chen, QC. et al. The design and processing of SONG library. NUCL SCI TECH 27, 90 (2016). https://doi.org/10.1007/s41365-016-0102-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0102-x

Keywords

Navigation