Skip to main content
Log in

Optically active chiral Ag nanowires

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Chiral Ag nanowires (CAgNWs), fabricated inside chiral carbon nanotubes (CCNTs), exhibit strong circular dichroism (CD) signals in the visible and near-IR regions. Enantiopure CCNTs were prepared by carbonization of the self-assembled chiral polypyrrole nanotubes according to our previous report. Ag ions could be easily introduced into the chiral pores of CCNTs due to the capillary phenomenon. After hydrogen reduction, the optically active CAgNWs formed inside the channels of the CCNTs. The helical channels in the CCNTs played a predominant effect on the chiral formation of the CAgNWs. This system provides new insight into the fabrication as well as the study of optical activity (OA) of chiral inorganic nanomaterials. Such novel chiral inorganic material will bring new opportunities in non-linear optics, biosensors and chiral recognition.

中文摘要

本文以手性碳纳米管为模板, 成功地在其内部形成了手性银纳米线. 由于手性排列的银纳米线之间的集合耦合效应, 在可见光区和近红外区产生了较强的手性圆二色信号. 根据我们先前报道的方法, 通过碳化处理自组装合成的手性吡咯碳纳米管得到了单一手性的碳纳米管. 由于毛细管效应, 银离子能够很容易地进入手性碳纳米管的手性孔道中, 然后再通过氢气高温还原, 在其管内得到了具有光学活性的手性银纳米线. 手性碳纳米管内的螺旋孔道对手性银纳米线的形成起模板作用. 该合成体系将有助于理解具有手性光学活性的无机材料的形成及其机理. 这种新颖的手性无机材料也将有机会应用到非线性光学器件、生物传感和手性识别等领域.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutchings GJ, Haruta M. A golden age of catalysis: a perspective. Appl Catal A-Gen, 2005, 291: 2–5

    Article  Google Scholar 

  2. Hu X, Dong S. Metal nanomaterials and carbon nanotubes-synthesis, functionalization and potential applications towards electrochemistry. J Mater Chem, 2008, 18: 1279–1295

    Article  Google Scholar 

  3. Murray RW. Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev, 2008, 108: 2688–2720

    Article  Google Scholar 

  4. Schierhorn M, Lee SJ, Boettcher SW, Stucky GD, Moskovits M. Metal–silica hybrid nanostructures for surface-enhanced Raman spectroscopy. Adv Mater, 2006, 18: 2829–2832

    Article  Google Scholar 

  5. Leutwyler WK, Bürgi SL, Burgl H. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933–937

    Article  Google Scholar 

  6. Tang Z, Kotov NA. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater, 2005, 17: 951–962

    Article  Google Scholar 

  7. Guerrero-Martínez A, Alonso-Gómez JL, Auguié B, Cid MM, Liz-Marzán LM. From individual to collective chirality in metal nanoparticles. Nano Today, 2011, 6: 381–400

    Article  Google Scholar 

  8. Valev VK, Baumberg JJ, Sibilia C, Verbiest T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv Mater, 2013, 25: 2517–2534

    Article  Google Scholar 

  9. Zhan C, Wang J, Yuan J, et al. Synthesis of right-and left-handed silver nanohelices with a racemic gelator. Langmuir, 2003, 19: 9440–9445

    Article  Google Scholar 

  10. Tang Y, Cohen AE. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 2011, 332: 333–336

    Article  Google Scholar 

  11. Tamura M, Fujihara H. Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc, 2003, 125: 15742–15743

    Article  Google Scholar 

  12. Verbiest T, Rodriguez V. Focus issue introduction: chiral optical materials. Opt Mater Express, 2011, 1: 3–4

    Article  Google Scholar 

  13. Hendry E, Carpy T, Johnson J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol, 2010, 5: 783–787

    Article  Google Scholar 

  14. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev, 2005, 105: 1547–1562

    Article  Google Scholar 

  15. Wu X, Xu L, Liu L, et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J Am Chem Soc, 2013, 135: 18629–18636

    Article  Google Scholar 

  16. Liu W, Zhu Z, Deng K, et al. Gold nanorod chiral mesoporous silica core–shell nanoparticles with unique optical properties. J Am Chem Soc, 2013, 135: 9659–9664

    Article  Google Scholar 

  17. Schaaff TG, Whetten RL. Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J Phys Chem B, 2000, 104: 2630–2641

    Article  Google Scholar 

  18. Gautier C, Bürgi T. Chiral inversion of gold nanoparticles. J Am Chem Soc, 2008, 130: 7077–7084

    Article  Google Scholar 

  19. Shemer G, Krichevski O, Markovich G, et al. Chirality of silver nanoparticles synthesized on DNA. J Am Chem Soc, 2006, 128: 11006–11007

    Article  Google Scholar 

  20. Li Z, Zhu Z, Liu W, et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J Am Chem Soc, 2012, 134: 3322–3325

    Article  Google Scholar 

  21. Numata M, Sugiyasu K, Hasegawa T, Shinkai S. Sol-gel reaction using DNA as a template: an attempt toward transcription of DNA into inorganic materials. Angew Chem Int Ed, 2004, 116: 3341–3345

    Article  Google Scholar 

  22. Kuzyk A, Schreiber R, Fan Z, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012, 483: 311–314

    Article  Google Scholar 

  23. Li C, Deng K, Tang Z, Jiang L. Twisted metal-amino acid nanobelts: chirality transcription from molecules to frameworks. J Am Chem Soc, 2010, 132: 8202–8209

    Article  Google Scholar 

  24. Sánchez-Castillo A, Noguez C, Garzón IL. On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters. J Am Chem Soc, 2010, 132: 1504–1505

    Article  Google Scholar 

  25. Zhu Z, Liu W, Li Z, et al. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS nano, 2012, 6: 2326–2332

    Article  Google Scholar 

  26. Li Y, Liu M. Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chem Commun, 2008, 43: 5571–5573

    Article  Google Scholar 

  27. Han B, Zhu Z, Li Z, Zhang W, Tang Z. Conformation modulated optical activity enhancement in chiral cysteine and au nanorod assemblies. J Am Chem Soc, 2014, 136: 16104–16107

    Article  Google Scholar 

  28. Wang X, Duan P, Liu M. Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic L-glutamide. Chem Commun, 2012, 48: 7501–7503

    Article  Google Scholar 

  29. Nishida N, Yao H, Ueda T, Sasaki A, Kimura K. Synthesis and chiroptical study of d/l-penicillamine-capped silver nanoclusters. Chem Mater, 2007, 19: 2831–2841

    Article  Google Scholar 

  30. Behar-Levy H, Neumann O, Naaman R, Avnir D. Chirality induction in bulk gold and silver. Adv Mater, 2007, 19: 1207–1211

    Article  Google Scholar 

  31. Zhou Y, Zhu Z, Huang W, et al. Optical coupling between chiral biomolecules and semiconductor nanoparticles: size-dependent circular dichroism absorption. Angew Chem Int Ed, 2011, 50: 11456–11459

    Article  Google Scholar 

  32. Carmeli I, Lieberman I, Kraversky L, et al. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett, 2010, 10: 2069–2074

    Article  Google Scholar 

  33. Slocik JM, Govorov AO, Naik RR. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett, 2011, 11: 701–705

    Article  Google Scholar 

  34. Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ. Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc, 2011, 133: 3728–3731

    Article  Google Scholar 

  35. Schlesinger M, Giese M, Blusch LK, Hamad WY, MacLachlan MJ. Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose. Chem Commun, 2015, 51: 530–533

    Article  Google Scholar 

  36. Xie J, Che S. Chirality of anisotropic metal nanowires with a distinct multihelix. Chem-Eur J, 2012, 18: 15954–15959

    Article  Google Scholar 

  37. Xie J, Duan Y, Che S. Chirality of metal nanoparticles in chiral mesoporous silica. Adv Funct Mater, 2012, 22: 3784–3792

    Article  Google Scholar 

  38. Zhu Y, He J, Shang C, et al. Chiral gold nanowires with Bboerdijk- Coxeter-Bernal structure. J Am Chem Soc, 2014, 136: 12746–12752

    Article  Google Scholar 

  39. Kondo Y, Takayanagi K. Synthesis and characterization of helical multi-shell gold nanowires. Science, 2000, 289: 606–608

    Article  Google Scholar 

  40. Velázquez-Salazar JJ, Esparza R, Mejia-Rosales SJ, et al. Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. ACS nano, 2011, 5: 6272–6278

    Article  Google Scholar 

  41. Wang Y, Wang Q, Sun H, et al. Chiral transformation: from single nanowire to double helix. J Am Chem Soc, 2011, 133: 20060–20063

    Article  Google Scholar 

  42. Liu S, Duan Y, Feng X, Yang J, Che S. Synthesis of enantiopure carbonaceous nanotubes with optical activity. Angew Chem Int Ed, 2013, 52: 6858–6862

    Article  Google Scholar 

  43. Hu L, Kim HS, Lee JY, Peumans P, Cui Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 2010, 4: 2955–2963

    Article  Google Scholar 

  44. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater, 2002, 14: 4736–4745

    Article  Google Scholar 

  45. Sun Y, Gates B, Mayers B, Xia Y. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2: 165–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhehao Huang or Shunai Che.

Additional information

Liguo Ma received his BSc degree in chemical engineering from Changchun University of Technology in 2007. He joined Prof. Che’s group as a PhD candidate in 2011. His research interests focus on the synthesis and properties of chiral inorganic materials.

Zhehao Huang obtained his BSc degree in chemistry in 2009, and received his PhD degree under Prof. Che’s supervision in 2014 from Shanghai Jiao Tong University. His current research interests include self-assembly of biomolecules, fabrication of bio-inspired materials and nanomaterials, and the corresponding applications.

Shunai Che is a professor in the Department of Chemistry, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University. She was born in 1964 and received her PhD degree from Yokohama National University. She was a guest researcher at Saitama University and worked as a postdoctoral fellow at Yokohama National University. Her research interests encompass the development of chiral inorganic materials and porous materials with novel structures and functions in view of applications in optical devices and heterogeneous catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Huang, Z., Duan, Y. et al. Optically active chiral Ag nanowires. Sci. China Mater. 58, 441–446 (2015). https://doi.org/10.1007/s40843-015-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0058-x

Keywords

Navigation