Skip to main content
Log in

Chiral AuCu heterostructures with site-specific geometric control and tailored plasmonic chirality

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rational design and construction of chiral-achiral hybrid structures are of great importance to realize the multifunctional complex chiral structures toward emerging technological applications. However, significant challenges remain due to the lack of fine control over the heterostructure. Here, we have developed a general bottom-up synthetic strategy for the site-selective growth of Cu nanodomains on intrinsically chiral Au nanocrystals. Chiral AuCu heterostructures with three distinct architectures were achieved by controlling the overgrowth of Cu nanodomains in a site-specific manner. The geometry-dependent plasmonic chirality of the heterostructures was demonstrated experimentally by circular dichroism spectroscopy and theoretically through finite-difference time-domain simulations. The site-specific geometric control of chiral AuCu heterostructures was also extended to employ anisotropic chiral Au nanoplates and nanorods as the building blocks. By virtue of the galvanic replacement reactions between metal ions and Cu atoms, chiral heterostructures with increasing architectural complexity and compositional diversity can be further achieved. The current work not only opens up a promising strategy to synthesize complex chiral hybrid nanostructures but also provides an important knowledge framework that guides the rational design of multifunctional chiral hybrid nanostructures toward chiroptical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. ACS Nano, 2021, 15: 15538–15566

    Article  CAS  PubMed  Google Scholar 

  2. Ma W, Xu L, de Moura AF, Wu X, Kuang H, Xu C, Kotov NA. Chem Rev, 2017, 117: 8041–8093

    Article  CAS  PubMed  Google Scholar 

  3. Xia Y, Zhou Y, Tang Z. Nanoscale, 2011, 3: 1374–1382

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Xu J, Wang Y, Chen H. Chem Soc Rev, 2013, 42: 2930–2962

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Zhao J, Wang W, Lu M, Qu A, Sun M, Gao X, Chen C, Kuang H, Xu C, Xu L. Sci China Chem, 2022, 65: 1911–1920

    Article  CAS  Google Scholar 

  6. Guo X, Wu D, Li Y, He Z, Wang JL, Zhang C, Pan Z, Pang Y, Zhuang T, Yu SH. Sci China Mater, 2022, 65: 1362–1368

    Article  CAS  Google Scholar 

  7. Ben-Moshe A, Maoz BM, Govorov AO, Markovich G. Chem Soc Rev, 2013, 42: 7028–7041

    Article  CAS  PubMed  Google Scholar 

  8. Kumar J, Thomas KG, Liz-Marzán LM. Chem Commun, 2016, 52: 12555–12569

    Article  CAS  Google Scholar 

  9. Lu J, Xue Y, Bernardino K, Zhang NN, Gomes WR, Ramesar NS, Liu S, Hu Z, Sun T, de Moura AF, Kotov NA, Liu K. Science, 2021, 371: 1368–1374

    Article  CAS  PubMed  Google Scholar 

  10. Lee HE, Ahn HY, Mun J, Lee YY, Kim M, Cho NH, Chang K, Kim WS, Rho J, Nam KT. Nature, 2018, 556: 360–365

    Article  CAS  PubMed  Google Scholar 

  11. González-Rubio G, Mosquera J, Kumar V, Pedrazo-Tardajos A, Llombart P, Solís DM, Lobato I, Noya EG, Guerrero-Martínez A, Taboada JM, Obelleiro F, MacDowell LG, Bals S, Liz-Marzán LM. Science, 2020, 368: 1472–1477

    Article  PubMed  Google Scholar 

  12. Xu L, Wang X, Wang W, Sun M, Choi WJ, Kim JY, Hao C, Li S, Qu A, Lu M, Wu X, Colombari FM, Gomes WR, Blanco AL, de Moura AF, Guo X, Kuang H, Kotov NA, Xu C. Nature, 2022, 601: 366–373

    Article  CAS  PubMed  Google Scholar 

  13. Zheng G, He J, Kumar V, Wang S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, Wong KY. Chem Soc Rev, 2021, 50: 3738–3754

    Article  CAS  PubMed  Google Scholar 

  14. Kim H, Im SW, Cho NH, Seo DH, Kim RM, Lim YC, Lee HE, Ahn HY, Nam KT. Angew Chem Int Ed, 2020, 59: 12976–12983

    Article  CAS  Google Scholar 

  15. Lee HE, Kim RM, Ahn HY, Lee YY, Byun GH, Im SW, Mun J, Rho J, Nam KT. Nat Commun, 2020, 11: 263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Gao X, Zheng Q, Liu J, Meng D, Li H, Cai R, Fan H, Ji Y, Wu X. ACS Nano, 2021, 15: 15114–15122

    Article  CAS  PubMed  Google Scholar 

  17. Zhang NN, Sun HR, Xue Y, Peng F, Liu K. J Phys Chem C, 2021, 125: 10708–10715

    Article  CAS  Google Scholar 

  18. Wen X, Wang S, Liu R, Duan R, Hu S, Jiao T, Zhang L, Liu M. Small, 2022, 18: 2104301

    Article  CAS  Google Scholar 

  19. Sun X, Yang J, Sun L, Yang G, Liu C, Tao Y, Cheng Q, Wang C, Xu H, Zhang Q. ACS Nano, 2022, 16: 19174–19186

    Article  CAS  PubMed  Google Scholar 

  20. Tao Y, Sun L, Liu C, Yang G, Sun X, Zhang Q. Small, 2023, 19: 2301218

    Article  CAS  Google Scholar 

  21. Liu Z, Ai J, Kumar P, You E, Zhou X, Liu X, Tian Z, Bouř P, Duan Y, Han L, Kotov NA, Ding S, Che S. Angew Chem Int Ed, 2020, 59: 15226–15231

    Article  CAS  Google Scholar 

  22. Zhang Q, Hernandez T, Smith KW, Jebeli SAH, Dai AX, Warning L, Baiyasi R, McCarthy LA, Guo H, Chen DH, Dionne JA, Landes CF, Link S. Science, 2019, 365: 1475–1478

    Article  CAS  PubMed  Google Scholar 

  23. Kim RM, Huh JH, Yoo SJ, Kim TG, Kim C, Kim H, Han JH, Cho NH, Lim YC, Im SW, Im EJ, Jeong JR, Lee MH, Yoon TY, Lee HY, Park QH, Lee S, Nam KT. Nature, 2022, 612: 470–476

    Article  CAS  PubMed  Google Scholar 

  24. Wu F, Tian Y, Luan X, Lv X, Li F, Xu G, Niu W. Nano Lett, 2022, 22: 2915–2922

    Article  CAS  PubMed  Google Scholar 

  25. Hou K, Zhao J, Wang H, Li B, Li K, Shi X, Wan K, Ai J, Lv J, Wang D, Huang Q, Wang H, Cao Q, Liu S, Tang Z. Nat Commun, 2020, 11: 4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao C, Xu L, Ma W, Wu X, Wang L, Kuang H, Xu C. Adv Funct Mater, 2015, 25: 5816–5822

    Article  CAS  Google Scholar 

  27. Negrín-Montecelo Y, Movsesyan A, Gao J, Burger S, Wang ZM, Nlate S, Pouget E, Oda R, Comesaña-Hermo M, Govorov AO, Correa-Duarte MA. J Am Chem Soc, 2022, 144: 1663–1671

    Article  PubMed  Google Scholar 

  28. Liu H, Vladár AE, Wang PP, Ouyang M. J Am Chem Soc, 2023, 145: 7495–7503

    Article  CAS  PubMed  Google Scholar 

  29. Zheng G, Jiao S, Zhang W, Wang S, Zhang Q, Gu L, Ye W, Li J, Ren X, Zhang Z, Wong K. Nano Res, 2022, 15: 6574–6581

    Article  CAS  Google Scholar 

  30. Zhuang TT, Li Y, Gao X, Wei M, de Arquer FPG, Todorović P, Tian J, Li G, Zhang C, Li X, Dong L, Song Y, Lu Y, Yang X, Zhang L, Fan F, Kelley SO, Yu SH, Tang Z, Sargent EH. Nat Nanotechnol, 2020, 15: 192–197

    Article  CAS  PubMed  Google Scholar 

  31. Zhu J, Wu F, Han Z, Shang Y, Liu F, Yu H, Yu L, Li N, Ding B. Nano Lett, 2021, 21: 3573–3580

    Article  CAS  PubMed  Google Scholar 

  32. Fang Y, Liu X, Liu Z, Han L, Ai J, Zhao G, Terasaki O, Cui C, Yang J, Liu C, Zhou Z, Chen L, Che S. Chem, 2023, 9: 460–471

    Article  CAS  Google Scholar 

  33. Wang J, Wu X, Ma W, Xu C. Adv Funct Mater, 2020, 30: 2000670

    Article  CAS  Google Scholar 

  34. Jin Y, Xiao C, Tan L, Chen Z, Wen Z, Cheng Y, Fu W, Wang PP. Adv Opt Mater, 2023, 11: 2203068

    Article  CAS  Google Scholar 

  35. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Chem Rev, 2016, 116: 3722–3811

    Article  CAS  PubMed  Google Scholar 

  36. Lyu Z, Xie M, Aldama E, Zhao M, Qiu J, Zhou S, Xia Y. ACS Appl Nano Mater, 2019, 2: 1533–1540

    Article  CAS  Google Scholar 

  37. Hsia CF, Madasu M, Huang MH. Chem Mater, 2016, 28: 3073–3079

    Article  CAS  Google Scholar 

  38. Jia H, Yang Y, Chow TH, Zhang H, Liu X, Wang J, Zhang CY. Adv Funct Mater, 2021, 31: 2101255

    Article  CAS  Google Scholar 

  39. Fan X, An S, Jia J, Xu W, Wu X, Zong J, Wang Y, Chen H, Feng Y. Chem Mater, 2022, 34: 6057–6067

    Article  CAS  Google Scholar 

  40. Yang TH, Shi Y, Janssen A, Xia Y. Angew Chem Int Ed, 2020, 59: 15378–15401

    Article  CAS  Google Scholar 

  41. Zheng Y, Zong J, Xiang T, Ren Q, Su D, Feng Y, Wang Y, Chen H. Sci China Chem, 2022, 65: 1299–1305

    Article  CAS  Google Scholar 

  42. Jin M, He G, Zhang H, Zeng J, Xie Z, Xia Y. Angew Chem Int Ed, 2011, 50: 10560–10564

    Article  CAS  Google Scholar 

  43. Wang S, Liu X, Mourdikoudis S, Chen J, Fu W, Sofer Z, Zhang Y, Zhang S, Zheng G. ACS Nano, 2022, 16: 19789–19809

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, Han L, Jing H, Blom DA, Lin Y, Xin HL, Wang H. ACS Nano, 2016, 10: 2960–2974

    Article  CAS  PubMed  Google Scholar 

  45. Ye X, Zheng C, Chen J, Gao Y, Murray CB. Nano Lett, 2013, 13: 765–771

    Article  CAS  PubMed  Google Scholar 

  46. Lyu Z, Shang Y, Xia Y. Acc Mater Res, 2022, 3: 1137–1148

    Article  CAS  Google Scholar 

  47. Xia X, Wang Y, Ruditskiy A, Xia Y. Adv Mater, 2013, 25: 6313–6333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22174104 to Q.Z.). L.S. acknowledges the support of the Hubei Provincial Natural Science Foundation of China (2022CFB627) and the Fundamental Research Funds for the Central Universities (20422022kf1039). The authors also acknowledge the support of the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University and the Core Facility of Wuhan University for instrument use and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichao Sun or Qingfeng Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Sun, L., Tao, Y. et al. Chiral AuCu heterostructures with site-specific geometric control and tailored plasmonic chirality. Sci. China Chem. 66, 3280–3289 (2023). https://doi.org/10.1007/s11426-023-1685-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1685-3

Navigation