Skip to main content
Log in

Mechanisms and Kinetics of Solid State Reduction of Titano Magnetite Ore with Methane

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Sustainable development aims to reduce energy demand and carbon footprint in all fields of industry. In this study, a new approach to decrease these has been performed. Methane, a hydrocarbon gas, has been employed as a reductant with better reducing properties than solid carbon and hydrogen separately. Reduction of a titano magnetite ore has been executed at temperature ranging from 800 to 1200 °C using methane contents between 10 and 30 vol% in the hydrogen–methane gas mixture. Due to the high carbon activity reaching up to approximately a C = 200, higher reduction degrees has been achieved at lower temperatures compared to ordinary carbothermic reductions. Kinetically, the reduction of titano magnetite ore was most likely mix controlled regardless of the methane contents used. The reduction process especially at the early stages displayed shrinking core behaviour. The calculated activation energies, based on the obtained experimental metallisation data, varied when assuming the reaction is controlled by diffusion (iron 25–28 kJ/mol, titanium: 335–355 kJ/mol) or chemical reaction rate (iron 21–25 kJ/mol, titanium 178–184 kJ/mol) indicating a likely mixed control process. Iron was fully reduced at 1000 °C after 1 h and at 1200 °C in half an hour. The calculated rate constants for metallisation of titanium, vanadium and iron varied too, i.e. Fe from 0.00454 to 0.01150. The possible reduction mechanism is presented and discussed based on the kinetics results achieved and SEM–EDS observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee SY, Holder GD (2001) Methane hydrates potential as a future energy source. Fuel Process Technol 71(1–3):181–186

    Article  CAS  Google Scholar 

  2. Qiang W, Yanzhong L, Jiang W (2004) Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source. Appl Therm Eng 24(4):539–548

    Article  Google Scholar 

  3. Makogon YF, Holditch SA, Makogon TY (2007) Natural gas-hydrates—a potential energy source for the 21st century. J Petrol Sci Eng 56(1–3):14–31

    Article  CAS  Google Scholar 

  4. Jena BC, Dresler W, Reilly IG (1995) Extraction of titanium, vanadium and iron from titanomagnetite deposits at Pipestone Lake. Manit Can Miner Eng 8(1/2):159–168

    Article  CAS  Google Scholar 

  5. She XF, Sun HY, Dong XJ, Xue QG, Wang JS (2013) Reduction mechanism of titanomagnetite concentrate by carbon monoxide. J Min Metall Sect B 49(3):263–270

    Article  CAS  Google Scholar 

  6. Longbottom RJ, Ostrovski O, Park E (2006) Formation of cementite from titanomagnetite ore. Iron Steel Inst Jpn Int 46(5):641–646

    Article  CAS  Google Scholar 

  7. Battle T, Srivastava U, Kopfle J, Hunter R, McClelland J (2014) The direct reduction of iron, treatise on process metallurgy, vol 3: industrial processes, part A. Elsevier Ltd, Philadelphia, pp 89–176

    Book  Google Scholar 

  8. El-Hussiny NA, El-Amir A, Abdel-Rahim ST, El Hossiny K, El-Menshawi M, Shalabi H (2014) Kinetics of direct reduction titano-magnetite concentrate briquette produced from rosetta-ilmenite via hydrogen. Open Access Libr J 1:e662. doi:10.4236/oalib.1100662

    Google Scholar 

  9. Alizadeh R, Jamshidi E, Ale-Ebrahim H (2007) Kinetic study of nickel oxide reduction by methane. Chem Eng Technol 30(8):1123–1128

    Article  CAS  Google Scholar 

  10. Anacleto N, Ostrovski O (2004) Solid-state reduction of chromium oxide by methane-containing gas. Metall Mater Trans B 35(4):609–615

    Article  Google Scholar 

  11. Anacleto N, Ostrovski O, Ganhuly S (2004) Reduction of manganese ores by methane-containing gas. Iron Steel Inst Jpn Int 44(10):1615–1622

    Article  CAS  Google Scholar 

  12. Halli P (2015) Solid-state reduction of vanadium containing mustavaara titano-magnetite concentrate, master’s thesis. Aalto University, Espoo

    Google Scholar 

  13. Monazam ER, Breault RW, Siriwardane R, Richards G, Carpenter S (2013) Kinetics of the reduction of hematite (Fe2O3) by Methane (CH4) 155 during chemical looping combustion: a global mechanism. Chem Eng J 232:478–487. doi:10.1016/j.cej.2013.07.091

    Article  CAS  Google Scholar 

  14. Nasr S, Plucknett KP (2014) Kinetics of iron ore reduction by methane for chemical looping combustion. Energy Fuels 28(2):1387–1395. doi:10.1021/ef402142q

    Article  CAS  Google Scholar 

  15. Zhang G, Ostrovski O (2000) Reduction of titania by methane-hydrogen-argon gas mixture. Metall Mater Trans B 31(1):129–139

    Article  Google Scholar 

  16. Zhang G, Ostrovski O (2001) Reduction of ilmenite concentrates by me-thane-containing gas: part I. effects of ilmenite composition, temperature and gas composition. Can Metall Q 40(3):317–326

    Article  CAS  Google Scholar 

  17. Zhang G, Ostrovski O (2001) Reduction of ilmenite concentrates by methane containing gas, part ii: effects of preoxidation and sintering. Can Metall Q 40(4):489–497

    Article  CAS  Google Scholar 

  18. Zhang G, Ostrovski O (2001) Kinetic modelling of titania reduction by a methane-hydrogen-argon gas mixture. Metall Mater Trans B 32(3):465–473

    Article  Google Scholar 

  19. Ostrovski O, Zhang G (2006) Reduction and carburization of metal oxides by methane-containing gas. Am Inst Chem Eng J 52(1):300–310. doi:10.1002/aic.10628

    Article  CAS  Google Scholar 

  20. Choudhary TV, Goodman DW (2006) Methane decomposition: production of hydrogen and carbon filaments. Catalysis 19:164–183

    Article  CAS  Google Scholar 

  21. Muradov N (2001) Catalysis of methane decomposition over elemental carbon. Catal Commun 2(3–4):89–94

    Article  CAS  Google Scholar 

  22. Wood BJ, Wise H (1964) The reaction kinetics of gaseous hydrogen atoms with graphite. J Phys Chem 73(5):1348–1351

    Article  Google Scholar 

  23. Gaskell DR (2003) Introduction to the thermodynamics of materials, 4th edn. Taylor & Francis, New York. ISBN 9781560329923

    Google Scholar 

  24. HSC Chemistry 7.0, Outotec

  25. Randhava SS, Rehmat A (1970) The hydrogenation of carbon dioxide in parts-per-million levels. ACS Fuels 14(3):1–9

    CAS  Google Scholar 

  26. Lin SY, Suzuki Y, Hatano H, Harada M (2001) Hydrogen production from hydrocarbon by integration of water-carbon reaction and carbon dioxide removal (HyPr-ring method). Energy Fuels 15(2):339–343

    Article  CAS  Google Scholar 

  27. Penttinen U, Palosaari V, Siura T (1977) Selective dissolution and determination of sulphides in nickel ores by the bromine-methanol. Geol Soc Finl 49(2):79–84

    CAS  Google Scholar 

  28. Zatka VJ, Warner JS, Maskery D (1992) Chemical speciation of nickel in airborne dusts: analytical method and results of an interlaboratory test program. Environ Sci Technol 26(1):138–144. doi:10.1021/es00025a015

    Article  CAS  Google Scholar 

  29. Manju MS, Savithri S (2009) Kinetics of the carbothermal reduction of ilmenite: grain pellet model, In: Excerpt from the proceedings of the COMSOL conference 2009 Bangalore

  30. Szekely J, Evans JW, Sohn HY (1976) Gas-solid reactions. Academic Press, New York. ISBN: 0-12-680850-3

    Google Scholar 

  31. Makhoba G, Eriç RH (2010) Reductant characterization and selection for ferrochromium production. INFACON XII, Helsinki, vol 1, pp 359–365

  32. Zhang H, Banfield J (1998) Thermodynamic analysis of phase stability of nanocrystalline titania. J Mater Chem 8(9):2073–2076

    Article  CAS  Google Scholar 

  33. Eriksson G, Pelton AD, Woermann E, Ender A (1996) Measurement and thermodynamic evaluation of phase equilibria in the Fe–Ti–O system. Ber Bunsenges Phys Chem 100(11):1839–1849

    Article  CAS  Google Scholar 

  34. Dewan MAR, Zhang GQ, Ostrovski O (2011) Carbothermal reduction of ilmenite concentrates and synthetic rutile in different gas atmospheres. Miner Process Extr Metall Sect C 120(2):111–117

    Article  CAS  Google Scholar 

  35. Welham NJ, Williams JS (1999) Carbothermic reduction of ilmenite (FeTiO3) and rutile (TiO2). Metall Mater Trans B 30(6):1075–1081

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported and financed by Tekes under the “Finland Distinguished Professor” programme on project “Sustainable Production of Ferroalloys”. All the industrial members provided the raw material, and analyses are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Halli.

Additional information

The contributing editor for this article was Bart Blanpain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halli, P., Taskinen, P. & Eriҫ, R.H. Mechanisms and Kinetics of Solid State Reduction of Titano Magnetite Ore with Methane. J. Sustain. Metall. 3, 191–206 (2017). https://doi.org/10.1007/s40831-016-0063-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-016-0063-7

Keywords

Navigation