Skip to main content
Log in

Definition and design of hypoallergenic foods

  • Review
  • Published:
Allergo Journal International Aims and scope Submit manuscript

Abstract

The most common food allergies in adulthood are to plant foods (nuts, legumes, fruits, and vegetables). Eliminating relevant allergens in the plant itself represents a new approach to allergen avoidance for the primary, secondary, and tertiary prevention of food allergies. A variety of methods have been used to date with varying success in proof-of-concept investigations into the design of hypoallergenic foods. The present paper provides an overview of the current status of various hypoallergenic foods produced in model allergen plants (rice, soy, apple, tomato, carrot, peanut). Perspectives and challenges are discussed. The marketing of genetically modified hypoallergenic foods produced in this way is not currently foreseeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DBPCFC:

Double-blind placebo-controlled food challenge

dsRNA:

Double-stranded RNA

EAST:

Enzyme allergosorbent test

EFSA:

European Food Safety Authority

ELISA:

Enzyme linked immunosorbent assay

GenTG:

Genetic Engineering Act

GM:

Genetically modified

GMO:

Genetically modified organisms

HA:

Hypoallergenic

HPLC:

High performance liquid chromatography

hpRNA:

Hairpin RNA

IgE:

Immunoglobulin E

LOAEL:

Lowest observed adverse effect level

LTP:

Lipid transfer protein

mRNA:

Messenger RNA

nsLTP:

Non-specific lipid transfer protein

NTWG:

New Techniques Working Group

PR-10:

Pathogenesis-related protein family 10

PTGS:

Post-transcriptional gene silencing

RNA:

Ribonucleic acid

RNAi:

RNA interference

RNase:

Ribonuclease

RT-PCR:

Reverse transcriptase-polymerase chain reaction

siRNA:

Short interfering RNA

SIT:

Specific immunotherapy

TALEN:

Transcription activator-like effector nucleases

TILLING:

Targeting induced local lesions in genomes

UDP:

Uridine diphosphate

WT:

Wild-type

ZKBS:

German Central Commission for Biological Safety (Zentrale Kommission für die Biologische Sicherheit)

References

  1. Ballmer-Weber BK, Hoffmann-Sommergruber K. Update: molekulare Diagnose der Gemüse- und Fruchtallergie. Allergo J Int 2014;23:24–34

    Article  Google Scholar 

  2. Asero R, Jimeno L, Barber D. Component-resolved diagnosis of plant food allergy by SPT. Eur Ann Allergy Clin Immunol 2008;40:115–21

    CAS  PubMed  Google Scholar 

  3. Hoffmann-Sommergruber K, SAFE consortium, eds. The SAFEproject: ‘plant food allergies: field to table strategies for reducing their incidence in Europe’ an EC-funded study. Allergy 2015;60:436–42

    Article  Google Scholar 

  4. Palacín A, Gómez-Casado C, Rivas LA, Aguirre J, Tordesillas L, Bartra J et al. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study. PLoS One 2012;7:e50799

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schmidt-Andersen MB, Hall S, Dragsted LO. Identification of European allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin Rev Allergy Immunol 2011;41:4–19

    Article  Google Scholar 

  6. Chapman MD. Allergen nomenclature. In: Lockey RF, Ledford DK, eds. Allergens and allergen immunotherapy. 4th ed. New York: Informa Healthcare 2008; p 47–58

    Google Scholar 

  7. Hauser M, Wallner M, Ferreira F, Mahler V, Kleine-Tebbe J. Das Konzept der Pollen-Panallergene: Profiline und Polcalcine. Allergo J 2012;21:291–3

    Article  Google Scholar 

  8. Hompes S, Scherer K, Köhli A, Rueff F, Mahler V, Lange L et al. Nahrungsmittel-Anaphylaxie: Daten aus dem Anaphylaxie-Register. Allergo J 2010;19:234–42

    Google Scholar 

  9. Kleine-Tebbe J, Ballmer-Weber B, Breiteneder H, Vieths S. Bet v 1 und Homologe - Verursacher der Baumpollenallergie und birkenpollenassoziierter Kreuzreaktionen. Allergo J 2010;19:462–3

    Google Scholar 

  10. Petersen A, Scheurer S. Stabile pflanzliche Nahrungsmittelallergene: Lipid-Transfer-Proteine. Allergo J 2011;20:384–6

    Google Scholar 

  11. Radauer C, Kleine-Tebbe J, Beyer K. Stabile pflanzliche Nahrungsmittelallergene: Speicherproteine. Allergo J 2012;21:155–8

    Article  Google Scholar 

  12. Asero R, Mistrello G, Roncarolo D, Vries SC de, Gautier MF, Ciurana CL et al. Lipid-transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol 2000;122:20–32

    Article  CAS  PubMed  Google Scholar 

  13. Beyer K. Hypoallergenicity: a principle for the treatment of food allergy. In: Cooke RJ, Vandenplas Y, Wahn U, eds. Nutrition support for infants and children at risk. 59th Nestlé Nutrition Workshop, Pediatric Program, Berlin 2006. Basel: Karger; 2007. p 37–47

    Google Scholar 

  14. Taylor SL, Hefle SL. Food allergies and other food sensitivities. A publication of the Institute of Food Technologists’ Expert Panel on Food Safety and Nutrition. Foodtechnology 2001;55:68–83

    Google Scholar 

  15. Muraro A, Dreborg S, Halken S, Høst A, Niggemann B, Aalberse R et al. Dietary prevention of allergic diseases in infants and small children. Part I: immunologic background and criteria for hypoallergenicity. Pediatr Allergy Immunol 2004;15:103–11

    Article  PubMed  Google Scholar 

  16. Fritsché R. Utility of animal models for evaluating hypoallergenicity. Mol Nutr Food Res 2009;53:979–83

    Article  PubMed  Google Scholar 

  17. American Academy of Pediatrics Committee on Nutrition, ed. Clinical testing of hypoallergenic formulas. Pediatrics 2000;106:346–9

  18. Chung SY, Reed S. Reducing food allergy: is there promise for food applications? Curr Pharm Des 2014;20:924–30

    Article  CAS  PubMed  Google Scholar 

  19. Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol 2007;120:518–25

    Article  CAS  PubMed  Google Scholar 

  20. Gallo M, Sayre R. Removing allergens and reducing toxins from food crops. Curr Opin Biotechnol 2009;20:191–6

    Article  CAS  PubMed  Google Scholar 

  21. Hebert CG, Valdes JJ, Bentley WE. Beyond silencing engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr Opin Biotechnol 2008;19:500–5

    Article  CAS  PubMed  Google Scholar 

  22. Herman EM, Helm RM, Jung R, Kinney AJ. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 2003;132:36–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL, Ree R van. Allergenicity assessment of genetically modified crops - what makes sense? Nat Biotechnol 2008;26:73–81

    Article  CAS  PubMed  Google Scholar 

  24. EFSA Panel on Genetically Modified Organisms (GMO Panel), ed. Scientific opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA Journal 2010;8:1700. doi:10.2903/j.efsa.2010.1700

  25. Codex Alimentarius Commission. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, 25th Session, Rome 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants; Appendix IV, Annex on the assessment of possible allergenicity, p. 47-60

  26. Ladics GS. Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol 2008;46 (Suppl 10):S20–3

    Article  CAS  PubMed  Google Scholar 

  27. Fagard M, Vaucheret H. (Trans)gene silencing in plants: how many mechanisms? Ann Rev Plant Physiol Plant Mol Biol 2000;51:167–94

    Article  CAS  Google Scholar 

  28. Scheuer S, Sonnewald S. Genetic engineering of plant food with reduced allergenicity. Front Biosci 2009;14:59–71

    Article  Google Scholar 

  29. Nusrat A, Datta SK, Datta K. RNA interference in designing transgenic crops. GM Crops 2010; 1: 207–213

    Article  Google Scholar 

  30. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 2001;27:581–90

    Article  CAS  PubMed  Google Scholar 

  31. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs. Nature 2000;407(6802):319–20

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Hua ZC. Targeted gene silencing by small interfering RNA-based knock-down technology. Curr Pharm Biotechnol 2004;5:1–7

    Article  CAS  PubMed  Google Scholar 

  33. Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M et al. Reduction of 14-16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 1996;391:341–5

    Article  CAS  PubMed  Google Scholar 

  34. International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee, ed. Allergen Nomenclature. www.allergen.org/index.php. Zugegriffen 30.11.2014

  35. Allergome, The Platform of Allergen Knowledge (ed) www.allergome.org/script/search_step1.php?clear=1. Zugegriffen 30.11.2014

  36. Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F. Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol 2011;52:2190–9c

    Article  CAS  PubMed  Google Scholar 

  37. Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA et al. Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 2005;115:364–9

    Article  CAS  PubMed  Google Scholar 

  38. Krath BN, Eriksen FD, Pedersen BH, Gilissen LJWJ, van der Weg WE, Dragsted LO. Development of hypo-allergenic apples: silencing of the major allergen Mal d 1 gene in ‘Elstar’ apple and the effect of grafting. Journal of Horticultural Science & Biotechnology 2009; ISAFRUIT Special Issue: 52–57

    Google Scholar 

  39. Gilissen LJWJ, Bolhaar STHP, Knulst AC, Zuidmeeri L, Ree R van, Gao ZS et al. Production of hypoallergenic plant foods by selection, breeding and genetic modification. In: Gilissen LJEJ, Wichers HJ, Savelkoul HFJ, Bogers RJ, eds. Allergy matters: new approaches to allergy prevention and management. Heidelberg: Springer; 2006. p. 95–105

    Chapter  Google Scholar 

  40. Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, Lidholm J et al. Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy 2014;69:413–9

    Article  CAS  PubMed  Google Scholar 

  41. Willerroider M, Fuchs H, Ballmer-Weber BK, Focke M, Susani M, Thalhamer J et al. Cloning and molecular and immunological characterisation of two new food allergens, Cap a 2 and Lyc e 1, profilins from bell pepper (Capsicum annuum) and tomato (Lycopersicon esculentum). Int Arch Allergy Immunol 2003;131:245–55

    Article  CAS  PubMed  Google Scholar 

  42. Westphal S, Kolarich D, Foetisch K, Lauer I, Altmann F, Conti A et al. Molecular characterization and allergenic activity of Lyc e 2 (beta-fructofuranosidase), a glycosylated allergen of tomato. Eur J Biochem 2003;270:1327–37

    Article  CAS  PubMed  Google Scholar 

  43. Westphal S, Kempf W, Foetisch K, Retzek M, Vieths S, Scheurer S. Tomato profilin Lyc e 1: IgE cross-reactivity and allergenic potency. Allergy 2004;59:526–32

    Article  CAS  PubMed  Google Scholar 

  44. Foetisch K, Son AY, Altmann F, Aulepp H, Conti A, Haustein D, Vieths S. Tomato (Lycopersicon esculentum) allergens in pollen-allergic patients. Eur Food Res Technol 2001;213:259–66

    Article  CAS  Google Scholar 

  45. Wangorsch A, Jamin A, Foetisch K, Malczyk A, Reuter A, Vierecke S et al. Identification of Sola l 4 as Bet v 1 homologous pathogenesis related-10 allergen in tomato fruits. Mol Nutr Food Res 2014;59:582–92. doi: 10.1002/mnfr.201300620

    Article  PubMed  Google Scholar 

  46. Bässler OY, Weiss J, Wienkoop S, Lehmann K, Scheler C, Dölle S et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. J Proteome Res 2009;8:1111–22

    Article  PubMed  Google Scholar 

  47. Kondo Y, Urisu A, Tokuda R. Identification and characterization of the allergens in the tomato fruit by immunoblotting. Int Arch Allergy Immunol 2001;126:294–9

    Article  CAS  PubMed  Google Scholar 

  48. López-Matas MÄ, Larramendi CH, Ferrer A, Huertas AJ, Pagán JA, García-Abujeta JL et al. Identification and quantification of tomato allergens: in vitro characterization of six different varieties. Ann Allergy Asthma Immunol 2011;106:230–8

    Article  PubMed  Google Scholar 

  49. Welter S, Lehmann K, Dölle S, Schwarz D, Weckwerth W, Scheler C et al. Identification of putative new tomato allergens and differential interaction with IgEs of tomato allergic subjects. Clin Exp Allergy 2013;43:1419–27

    Article  CAS  PubMed  Google Scholar 

  50. Welter S, Dölle S, Lehmann K, Schwarz D, Weckwerth W, Worm M, Franken. Pepino mosaic virus infection of tomato affects allergen expression, but not the allergenic potential of fruits. PLoS One 2013;8:e65116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U. Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol 2006;118:1176–83

    Article  CAS  PubMed  Google Scholar 

  52. Pravettoni V, Primavesi L, Farioli L, Brenna OV, Pompei C, Conti A et al. Tomato allergy: detection of IgE-binding lipid transfer proteins in tomato derivatives and in fresh tomato peel, pulp, and seeds. J Agric Food Chem 2009;57:10749–54

    Article  CAS  PubMed  Google Scholar 

  53. Plant AL, Cohen A, Moses MS, Bray EA. Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol 1991;97:900–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E, Bartra J et al. Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 2006;4:231–42

    Article  CAS  PubMed  Google Scholar 

  55. Paulus KE, Mahler V, Pabst M, Kogel KH, Altmann F, Sonnewald U. Silencing ß1,2-xylosyltransferase in transgenic tomato fruits reveals xylose as constitutive component of Ige-binding epitopes. Front Plant Sci 2011;2:42. doi: 10.3389/fpls.2011.00042. eCollection 2011

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lorenz Y, Enrique E, Lequynh L, Fötisch K, Retzek M, Biemelt S et al. Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. J Allergy Clin Immunol 2006;118:711–8

    Article  CAS  PubMed  Google Scholar 

  57. Le LQ, Mahler V, Scheurer S, Foetisch K, Braun Y, Weigand D. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB J 2010;24:4939–47

    Article  CAS  PubMed  Google Scholar 

  58. Paulus KE. Molekulare Ansätze zur Reduktion des allergenen Potenzials von Tomatenfrüchten. Dissertation an der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg; 2012

  59. Peters S, Imani J, Mahler V, Foetisch K, Kaul S, Paulus KE et al. Dau c 1.01 and Dau c 1.02-silenced transgenic carrot plants show reduced allergenicity to patients with carrot allergy. Transgenic Res 2011;20:547–56

    Article  CAS  PubMed  Google Scholar 

  60. Wangorsch A, Weigand D, Peters S, Mahler V, Fötisch K, Reuter A et al. Identification of a Dau c PRPlike protein (Dau c 1.03) as a new allergenic isoform in carrots (cultivar Rodelika). Clin Exp Allergy 2012;42:156–66

    Article  CAS  PubMed  Google Scholar 

  61. Foetisch K, Scheurer S, Vieths S, Hanschmann KM, Lidholm J, Mahler V. Identification of allergen-resolved threshold doses of carrot (Daucus carota) by means of oral challenge and ELISA. J Allergy Clin Immunol 2013;131:1711–13

    Article  CAS  PubMed  Google Scholar 

  62. Worm M, Eckermann O, Dölle S, Aberer W, Beyer K, Hawranek T et al. Auslöser und Therapie der Anaphylaxie: Auswertung von mehr als 4000 Fällen aus Deutschland, Æsterreich und der Schweiz. Dtsch Arztebl Int 2014;111:367–75

    PubMed Central  PubMed  Google Scholar 

  63. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J 2008;6:135–45

    Article  CAS  PubMed  Google Scholar 

  64. Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, Thelen JJ et al. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. J Agric Food Chem 2008;56:11225–33

    Article  CAS  PubMed  Google Scholar 

  65. Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ. Validation of gelfree, label-free quantitative proteomics approaches: applications for seed allergen profiling. J Proteomics 2008;72:555–66. doi: 10.1016/j.jprot.2008.11.005

    Article  PubMed  Google Scholar 

  66. Miles S, Bolhaar S, Gonzalez-Mancebo E, Hafner C, Hoffmann-Sommergruber K, Fernandez-Rivas M, Knulst A. Attitudes towards low allergen food in food allergic consumers. Nutr Food Sci 2005;35:220–8

    Article  Google Scholar 

  67. Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Claßen M et al. Guidelines on the management of IgE-mediated food allergies. S2K-Guidelines of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with the German Medical Association of Allergologists (AeDA), the German Professional Association of Pediatricians (BVKJ), the German Allergy and Asthma Association (DAAB), German Dermatological Society (DDG), the German Society for Nutrition (DGE), the German Society for Gastroenterology, Digestive and Metabolic Diseases (DGVS), the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery, the German Society for Pediatric and Adolescent Medicine (DGKJ), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Society for Pneumology (DGP), the German Society for Pediatric Gastroenterology and Nutrition (GPGE), German Contact Allergy Group (DKG), the Austrian Society for Allergology and Immunology (ÆGAI), German Professional Association of Nutritional Sciences (VDOE) and the Association of the Scientific Medical Societies Germany (AWMF). Allergo J Int 2015;24: 256–93

    Article  Google Scholar 

  68. Ring J, Beyer K, Biedermann T, Bircher A, Duda D, Fischer et al. Guideline for acute therapy and management of anaphylaxis. S2 guideline of DGAKI, AeDA, GPA, DAAU, BVKJ, ÆGAI, SGAI, DGAI, DGP, DGPM, AGATE and DAAB. Allergo J Int 2014; 23: 96–112

    Article  PubMed Central  PubMed  Google Scholar 

  69. Neudecker P, Lehmann K, Nerkamp J, Haase T, Wangorsch A, Fötisch K et al. Mutational epitope analysis of Pru av 1 and Api g 1, the major allergens of cherry (Prunus avium) and celery (Apium graveolens): correlating IgE reactivity with three-dimensional structure. Biochem J 2003;376(Pt 1):97–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Wiche R, Gubesch M, König H, Fötisch K, Hoffmann A, Wangorsch A et al. Molecular basis of pollen-related food allergy: Identification of a second cross-reactive IgE epitope on Pru av 1, the major cherry allergen. Biochem J 2005;385:319–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. King N, Helm R, Stanley JS, Vieths S, Lüttkopf D, Hatahet L et al. Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res 2005;49:963–71

    Article  CAS  PubMed  Google Scholar 

  72. Hazebrouck S, Guillon B, Drumare MF, Paty E, Wal JM, Bernard H. Trypsin resistance of the major peanut allergen Ara h 6 and allergenicity of the digestion products are abolished after selective disruption of disulfide bonds. Mol Nutr Food Res 2012;56:548–57

    Article  CAS  PubMed  Google Scholar 

  73. Bolhaar ST, Zuidmeer L, Ma Y, Ferreira F, Bruijnzeel Koomen CA, Hoffmann-Sommergruber K et al. A mutant of the major apple allergen, Mal d 1, demonstrating hypo-allergenicity in the target organ by double-blind placebo-controlled food challenge. Clin Exp Allergy 2005;35:1638–44

    Article  CAS  PubMed  Google Scholar 

  74. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Zentrale Kommission für die Biologische Sicherheit (ZKBS), eds. Stellungnahme der ZKBS zu neuen Techniken für die Pflanzenzüchtung. Az.: 402.45310.0104 Juni 2012. www.keine-gentechnik.de/fileadmin/pics/Informationsdienst/ZKBS_Neue_Techniken_Pflanzenzuechtung_D_2012.pdf

  75. McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 2000;123: 439–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Morbitzer R, Römer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 2010;107: 21617–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Mahler.

Additional information

Conflicts of interest

The author states that there are no conflicts of interest.

Annotation

This paper is based on a book chapter by the same author that appeared in Kleine-Tebbe J, Jakob T. (Eds.). Molekulare Allergiediagnostik. Springer 2015

Cite this as

Mahler V. Definition and design of hypoallergenic foods. Allergo J Int 2015;24:244–55

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahler, V. Definition and design of hypoallergenic foods. Allergo J Int 24, 244–255 (2015). https://doi.org/10.1007/s40629-015-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40629-015-0073-1

Key words

Navigation